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the facts and accuracy of the data herein. The contents do not necessarily reflect the 
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report does not constitute a standard, specification, or regulation. Comments contained in 

this paper related to the specific testing equipment and materials should not be considered 

an endorsement of any commercial product or service, no such endorsement is tended or 

implied. 
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ABSTRACT 

In 2007, the American Association of State Highway and Transportation Officials 

published a new policy requiring the application of the Load and Resistance Factor 

Design (LRFD) methodology for pile foundations. The Alabama Department of 

Transportation (ALDOT) currently uses LRFD, however, the LRFD resistance factor 

used is not based on reliability theory and does not necessarily represent the Alabama 

soils. A pair of authors calibrated LRFD resistance factors for Alabama soils using First 

Order Second Moment (FOSM). However, FOSM leads to over-conservatism. Thus, this 

study calibrated LRFD resistance factors using the First Order Reliability Method and 

Monte Carlo Simulation (MCS) besides FOSM. MCS was found to be the most efficient 

method. Moreover, pile setup was incorporated into the LRFD resistance factor 

calibration and generated a reasonable increase on the resistance factors at 30, 45, 60, and 

90 days after the end of initial driving. Finally, the calibrated resistance factors are 

compared to similar resistance factors calibrated within the United States to evaluate the 

performance of the prediction methods used in Alabama. The results generate a variety of 

reliability-based resistance factors that are recommended for use depending on the 

standard ALDOT design methodology and the field test procedures used. 
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CHAPTER I – INTRODUCTION 

1.1 Research Objectives 

Pile foundations are used extensively as support for high-rise buildings, bridges and other 

heavy structures, and to safely transfer the structural loads and moments to the ground. 

Piles are also used to avoid excess settlement or lateral movement. The most common 

type of piles utilized in the state of Alabama are driven piles. Piles are designed to carry 

the structural loads and maintain construction costs as low as possible at the same time. 

Nevertheless, the design of pile foundations involves a significant number of 

uncertainties which can be translated generally to over-conservatism. One way to 

decrease the construction costs is to develop more accurate prediction methods through 

static analysis methods, design programs, dynamic analysis methods, and pile setup 

consideration. If the anticipated pile resistance is more accurately estimated before its 

driving, pile lengths and sizes can be reduced and, hence, cost savings are achieved. 

Therefore, it is clear that managing uncertainty is largely important to use resources, 

time, and money efficiently. 

The basic pile design starts with static analysis methods or design programs. Both 

are related since design programs incorporate one or more static analysis methods to 

estimate the pile capacity. The static analysis methods allow engineers to estimate the 

pile length and pile size prior to installation. Several static analysis methods are available 

and each one of them has specific applications, limitations, and soil parameters required. 

In the same way, several design programs have become more popular due to their time 

efficiency. The federal government developed its own design program DRIVEN through 

the Federal Highway Administration. On the other hand, Alabama also developed a 

design program called WBUZPILE to be applied for pile designing in Alabama soils.  

Once the pile length, pile size, and nominal resistance are estimated through static 

analysis methods or design programs, the designs are confirmed during construction by 
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field control determination tests or methods. The most accurate method to verify the pile 

capacity is through static load testing. Static load tests consist of loading the pile using a 

load cell attached to a reaction system that keeps the load cell fixed. The load increases 

gradually until failure. Another method to verify or revise design is through dynamic load 

testing based on dynamic analysis and wave propagation theory. Dynamic tests consist of 

a hammer hitting the head of a pile during and after installation. The compression wave 

data during hammer blows is obtained and processed through a Pile Driving Analyzer 

(PDA), which can incorporate signal matching (iCAP or CAPWAP). Dynamic load 

testing can be considered as an economically efficient method to determine the capacity 

of a pile compared to the significant cost of static load testing. 

Another aspect of design capable of producing cost-savings for pile design is the 

phenomenon named pile setup, which consists of a pile resistance or capacity increase 

over some time interval after installation. When the pile is being driven, the surrounding 

soil is disturbed and losses strength. Once the installation has finished, the same soil 

starts a process to attempt to recover lost strength, which contributes to an increase in the 

pile capacity. If the pile capacity increase is accurately anticipated, the pile length, sizes 

and quantity can be decreased, hence lower costs would be required. Pile setup capacity 

increase can be measured immediately or some time interval after installation through 

dynamic load tests. Several prediction models to predict this capacity increase are 

available, but the most popular is the Skov and Denver [1] model. 

Driven piles have been designed following the Allowable Stress Design (ASD) 

methodology for years. ASD represents the construction uncertainties and safety margin 

typically through a single factor of safety (FS). For ASD, the pile capacity is reduced by 

dividing the nominal pile capacity by the FS. Nonetheless, the limitations of ASD were 

recognized in the 1990s [2]. Consequently, an alternative design methodology known as 

Load and Resistance Factor Design (LRFD) has been developed since the mid-1980 [3] 

and is becoming more popular due its reliability basis. For LRFD, loads and resistance 

have different sources and levels of uncertainty. Thus, each one (loads and resistances) is 

modified by partial factors. The loads are affected by load factors that are larger or equal 

to 1. The resistance is affected by resistance factors that are smaller or equal to 1. In other 
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words, if LRFD is employed, the loads are amplified while the resistance is 

underestimated. In this way, LRFD generates a design with more consistency and 

uniform level of safety [2]. Consequently, more economically efficient and repeatable 

designs are possible compared to ASD methodology [3]. 

Under LRFD, the resistance is reduced by multiplying the nominal capacity by a 

resistance factor (ф). This resistance factor can be lower or equal to 1 and can be 

calibrated for a specified regional soil if enough statistical data is available. The 

calibration depends on significant data sizes and is based on probability theory. The most 

widely probability-based methods used to calibrate a resistance factor are the First Order 

Second Method (FOSM), the First Order Reliability Method (FORM), and Monte Carlo 

Simulation (MCS). The three methods require a resistance bias factor (λR) obtained from 

the ratio between a set of measured capacity data and a set of predicted capacity data. The 

measured capacity is obtained from field test such as dynamic and static load testing, 

while the predicted capacity is obtained from static analysis method or design programs.  

Over some decades ago, several efforts have been made to implement and develop 

LRFD resistance factors for deep foundations for bridges. Nonetheless, the transition has 

been relatively slow [4] due to the large quantity and quality of data required, as well as 

deficiencies included in the early development of LRFD specifications. The American 

Association of State Highway and Transportation Officials (AASHTO) and the Federal 

Highway Administration (FHWA) published a policy that turned into an obligation for 

the usage of LRFD for all new bridges initiated after October 1st, 2007. Therefore, 

AASHTO also provided some recommended resistance factors for various design 

methods along with the policy. Nevertheless, several Departments of Transportation 

(DOTs) expressed their concern about the accuracy and over-conservatism of these 

resistance factors when applied to specific regions [3]. Consequently, AASHTO and 

FHWA allowed the state Department of Transportations to develop their regionally 

calibrated LRFD resistance factors for bridge foundations using statistical and reliability 

theory using existing databases. Since then, several DOTs started working on the 

composition of adequate databases and the development of their own LRFD resistance 
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factors to eliminate over-conservative designs and generate cost savings to the state and 

taxpayers. 

While states such as Florida, Illinois, Louisiana, Wisconsin, Iowa, and Arkansas 

have published studies where LRFD resistance factors are recommended to be used for 

bridge foundations within their respective states, Alabama is still transitioning from ASD 

to LRFD. Currently, there are two studies about region-specific resistance factors for 

Alabama, Prado [5] and Pement [2]. However, both studies calibrated the LRFD 

resistance factors using only FOSM and not FORM or MCS. Studies conducted by 

NCHRP 507 [6], Styler [7], Haque and Abu-Farsakh [8] revealed that FOSM tends to 

lead to some over-conservatism. For instance, NCHRP 507 [6] found that FOSM 

provides resistance factors 10% lower than FORM. Moreover, Styler [7] contends that 

FORM resistance factors tend to be 8%-23% larger than FOSM resistance factors. Also, 

Allen et al. [9] suggests that MCS is more adaptable and rigorous method than FOSM 

and provides resistance factors consistent with FORM. Consequently, the main objective 

of this study is to develop LRFD resistance factors unique to Alabama soils using FOSM, 

FORM, and MCS, in order to enhance accuracy and efficiency of pile design. Through 

this calibration, the reliability, consistency and efficiency of WBUZPILE and DRIVEN 

are evaluated. The second objective is to evaluate the performance of WBUZPILE and 

DRIVEN for pile design according to the relationships of the predicted capacity and the 

measured capacity. The third objective is to evaluate the performance of the Skov and 

Denver model for Alabama soils. The fourth objective is to evaluate the effect of pile 

setup on the calibrated LRFD resistance factors. Finally, the fifth objective is to compare 

the calibrated resistance factors with the recommended resistance factors from published 

studies from the federal government and other states in terms of reliability, consistency 

and efficiency. 
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CHAPTER II - LITERATURE REVIEW 

This chapter attempts to describe and explain the basic concepts applied to the 

subsequent chapters of this study. The main conceptual sections included are (1) driven 

piles, (2) basic pile design, (3) Allowable Stress Design methodology, (4) Load and 

Resistance Factor Design methodology, (5) pile load testing, and (6) pile setup. Some 

sentences, tables, figures, graphs, and equations will be referenced in the following 

chapters of the study. 

2.1 Driven Piles 

The first problem for a foundation designer is to establish whether the soil 

conditions are suitable to support the structure using shallow foundations or deep 

foundations (such us piles). Vesic [10] says that piles are used where upper soil strata 

are compressible or weak; where footings cannot transmit inclined, horizontal, or uplift 

forces; where scour is likely to occur; where future excavation may be adjacent to the 

structure; and where expansive collapsible soils extend for a considerable depth. The 

Federal Highway Administration (FHWA) [11] adds that pile foundations are used 

extensively to support buildings, bridges, and other heavy structures, to safely transfer 

structural loads to the ground, and to avoid excess settlement or lateral movement. 

According to Pement [2], driven piles and drilled shaft are the most common deep 

foundations. Nevertheless, driven piles are more widely implemented in the state of 

Alabama. 

Driven piles can be installed by impact driving or vibrating. There are two types 

of driven piles: End-bearing piles and friction piles. On one hand, End-bearing piles resist 

loads through the interaction of the cross-sectional area of its tip and the hard layer 

beneath. Although a minimal friction resistance is developed, this is usually ignored. On 

the other hand, friction piles resist loads through the interaction and friction of the 

perimetrical pile area and the soil around it. When bedrock is not encountered at a 
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reasonable depth below the ground surface, piles can resist loads through both end-

bearing and frictional resistance for economic efficiency [2]. 

2.2  Basic pile design 

One of the most important challenges for foundation engineering, especially for 

pile design, is to develop a safe and cost-effective foundation system. National 

committees such us Federal Highway Administration (FHWA), American Concrete 

Institute (ACI), American Institute of Steel Construction (AISC), and the American 

Association of State Highway and Transportation officials (AASHTO) are deeply 

involved in the updating of design requirements. However, in the geotechnical field, 

several variables affect the soil conditions and its interaction with a structure. Therefore, 

the soil conditions can be estimated, but cannot be determined with complete accuracy 

[2]. Generally, the required capacity and depth shall be estimated before driving the pile,. 

Thus, it is vital to predict the amount of nominal resistance of the pile with a reasonable 

accuracy despite the complex nature of the soils. This prediction or design can be 

performed through static analysis or design programs, which can implement several 

design methods. 

2.2.1 Static Analysis methods 

The most basic way to estimate the nominal capacity of the pile is through static 

analysis methods. FHWA [13] indicates that static analysis methods assume the pile as a 

geomaterial and are used to estimate required pile length for a given nominal resistance in 

the contract documents. Many methods of estimating pile lengths and axial capacity of 

driven piles have been developed based on the types of soils encountered by the pile. 

Once the pile lengths and nominal resistances are estimated, they are confirmed during 

construction by field control determination tests or methods. Each method has specific a 

application, limitations, and required soil parameters. Table 1 compares the static analysis 
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methods presented in AASHTO [14] design specifications and GEC-12 [13] manual, 

where shaded methods are the ones that are present in both documents. 

Table 1: Summary of Static Analysis Methods in GEC-12 and AASHTO 
(2014) for Determination of Nominal Resistance. 

Analysis method  Soil Type 
Soil 
Information 
Required 

Presented 
in GEC‐12 

Presented in 
2014 AASHTO 
code 

Meyerhof (1976) Cohesionless SPT N  No  Yes 

Nordlund (1963)  Cohesionless ф'  Yes  Yes 

α‐method  Cohesive  Su Yes  Yes 

β‐method (1951) (1979) *  Cohesive  Su  No  Yes  

λ‐method (1972)  Cohesive  Su  No  Yes  

API RP2A (1993)  Mixed  Su, ф'  Yes  No 

β‐method (1991) **  Mixed  ф'  Yes  No 

Brown (2001)  Mixed  SPT N  Yes  No 

Elsami & Fellenius (1997)  Mixed  CPTu  Yes  No 

Schmertmann (1975)  Mixed CPT  Yes  Yes 

Notes: 
ф' = effective stress friction angle. 
Su = Undrained shear strength. 
SPT = Standard penetration test. 
CPT = Cone penetration test. 
* = β-method in AASHTO is based on Skempton (1951) and Ersig and Kirby 
(1979). 
** = β-method in GEC-12 is based on Fellenius (1991) 

FHWA [13] recommends the use of the Nordlund method for cohesionless soils, 

and the α-method for cohesive soils, and the API method for large diameter pipe piles. 

However, FHWA [13] also states that regional geologic settings or construction control 

techniques may offer unique conditions not accounted for in these provided methods, 

therefore reliability calibrations for design methods and resistance factors are 

encouraged, and may supersede the presented guidelines herein if justified. 
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2.2.2 Software Program Analysis. 

Due to its time efficiency, software program analysis is becoming more popular 

for engineering purposes. As indicated by Pement [2], Software Program Analysis are 

mainly used for axial loaded single piles or pile groups. These programs can include one 

or several static analysis design methods. Also, they incorporate different soil layers, soil 

types, soil characteristics, which are used to estimate the pile capacity according to a 

specific depth. Table 2 summarizes some of the available commercial programs including 

the static analysis programs that they are based on. 

Table 2: Summary of Computer Analysis Software for Axial Single Pile 
Analysis (FHWA, 2016). 

Computer 
Program 

Static Analysis Methods In 
Program 

Method Presented 
in GEC‐12 (2016) 

Method Presented in 
AASHTO 7th edition 
(2014) 

AllPile  Navfac DM‐7 No  No 

A‐Pile  API‐RP2A  Yes  No 

A‐Pile  US Army COE No  No 

A‐Pile  FHWA (Alpha / Nordlund) Yes  Yes 

A‐Pile  Lambda Method  No  Yes 

A‐Pile  NGI (CPT)  No  No 

A‐Pile  ICP (CPT)  No  No 

DrivenPiles  Alpha Method  Yes  Yes 

DrivenPiles  Nordlund Method  Yes  Yes 

FB‐Deep  FDOT SPT Method No  No 

FB‐Deep  Schmertmann (CPT)  Yes  Yes 

FB‐Deep  UF (CPT) No  No 

FB‐Deep  LCPC (CPT)  No  No 

Unipile Alpha Method  Yes  Yes 

Unipile Beta Method  Yes  Yes, but differs 

Unipile Elsame and Fellenious (CPT)  Yes  No 

Unipile Schmertmann (CPT)  Yes  Yes 

Unipile LCPC (CPT)  No  No 

Unipile Meyerhof (SPT)  No  Yes 
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It should be noted that the software “DrivenPiles” shown in table 2 is an updated 

version of the software DRIVEN, which will be explained in the following sections. In 

addition, Alabama Department of Transportation (ALDOT) developed a software named 

WBUZPILE for pile design in soils within the state of Alabama. This software is also 

explained in the following sections. 

2.2.2.1 WBUZPILE software. 

ALDOT uses the program WBUZPILE for pile design. This software was 

developed in the 1980s and as a result of field and test data from piles driven in coastal 

Mobile County over several years of experience [15]. The program allows the user to 

input variables such as soil description, the ground elevation, pile type, pile tip elevation, 

groundwater elevation, soil classification (sand or clay), strata thickness, and SPT blow 

count numbers for each soil strata [2], as well as to choose between a ASD or LRFD 

design methodology. WBUZPILE uses empirical equations following four soil models: 

Silt, Sand, Clay, and Weathered Rock.  

For silt soils, by using D50, WBUZPILE converts the SPT-N values to the CPT 

bearing resistance (qc) according to the correlation presented by Kulhawy and Mayne 

[16]. Then, the friction ratio (Rf)(%) and adhesion are calculated using the following 

equations:

𝑅 %   ln 𝑞  2.58 /0.742 For sandy silt , (1) 

𝑅 %   ln 𝑞   1.894 /0.547 For clavey silt , (2) 

𝑅 %   ln 𝑞 0.817 /0.36 For silty clay , and (3) 

𝐴𝑑ℎ𝑒𝑠𝑖𝑜𝑛  𝑅  ∗ 𝑞  (4) 

where qc is the pile bearing resistance. In addition, WBUZPILE uses the Caquot’s 

relationship [17] to calculate the silt effective angle of internal friction [18]. The pile 

resistance can be calculated as follows: 

𝑃𝑖𝑙𝑒 𝑡𝑖𝑝 𝑏𝑎𝑠𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑞  ∗ 𝐴𝑟𝑒𝑎  , (5) 

For sand, WBUZPILE uses the following empirical equations:  
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𝐹𝑟𝑖𝑐𝑖𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝜑   27.9877  0.0951663 ∗ 𝑁   0.0137846 ∗ 𝑁  (6)

0.000354596 ∗ 𝑁   0.00000290751 ∗ 𝑁 , 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟  76103.3  11496.7 ∗ ф  691.929 ∗ 𝜑   20.7312 ∗ 𝜑  (7)

0.309012 ∗ 𝜑   0.00183079 ∗ 𝜑  

For clay, WBUZPILE uses the following empirical equations:  

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶   125 ∗ 𝑁 𝑝𝑠𝑓 if N  100 , (8) 

𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 𝐶   0.375 ∗ 144 ∗ 𝑁 𝑝𝑠𝑓 if N  100 , (9) 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟  9 ∗ 𝐶 𝑝𝑠𝑓  (10) 

Finally, for weathered Rock, WBUZPILE uses equations developed by O’Neill and 

Reese [19]:

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟  0.59 ∗ 𝑁 . 𝜎  𝑝𝑠𝑓 , (11) 

where N60 is the N corrected for the Hammer efficiency, and 𝜎  is the effective stress at 

the pile tip. 

As a result, the software provides the nominal pile capacity per linear foot of pile 

[2]. The shaft resistance typically shows a linear increase while the tip resistance remains 

constant along the corresponding strata. Some concerns have been raised about the 

reliability accuracy, and limitations of WBUZPILE since it uses fully empirical equations 

and does not consider conventional static analysis methods [2]. Consequently, ALDOT is 

currently using it just for sand and clay models. 

2.2.2.2 DRIVEN software. 

DRIVEN is a software program used developed by the federal government and 

has been used by some DOTs for decades. According to Pement [2], the FHWA 

developed DRIVEN in 1998 for static pile capacity calculation in either SI or imperial 

units. DRIVEN allows the user to consider open and closed end pipe piles, H-piles, 

circular or square solid concrete piles, timber piles, and monotube piles. The user inputs 

the soil profile based on strength parameters, strength loss during driving, and unit 

weights. Basically, DRIVEN uses the Nordlund method for cohesionless soils, and the α-

method for cohesive soils [2].  
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For cohesionless soils, the Nordlund method is mostly influenced by the soil 

friction angle, which is an indicator of the soil shear strength [2]. Moreover, the 

Nordlund method considers factors such as pile tapering, soil displacement, different 

grades of soil-pile friction (for different pile materials) and it is based on results of load 

tests in cohesionless soils [20]. In the same way as WBUZPILE, DRIVEN estimates soil 

properties for cohesionless soil layers using SPT data. 

For cohesive soils, DRIVEN requires cohesion and adhesion values for each 

layer. Nevertheless, DRIVEN is also capable of estimating the cohesion based on SPT 

data, if available. It should be noted that the adhesion factor is dependent upon the 

strength and nature of the clay, pile dimension, method of installation, and time effects 

[2]. In addition, DRIVEN allows the user to consider five different adhesion factors for 

each cohesive soil stratum, including a general adhesion value for cohesive soils and 

customized adhesion values [2]. 

As output, DRIVEN generates results of pile capacity versus pile depth for the 

whole soil profile. Furthermore, for cohesive and cohesionless soils, the software 

considers the effects of soft compressible soils, pile plugging, and potential scour [2]. As 

stated before, DRIVEN has recently been updated to a windows-based, commercially 

available program called “DrivenPiles”. 

2.3 Allowable Stress Design (ASD) method 

ASD design methodology has been used for decades in the Geotechnical engineering 

field as a way to incorporate uncertainties into a design. This method consists of utilizing 

a limit equilibrium analysis by keeping the anticipated loads lower than the capacity or 

resistances. In ASD, the uncertainties in the loads and resistances are expressed in an 

incorporated value named “Factor of Safety” (FS). Pement [2] suggests that the 

uncertainties from a design method are most likely due to (1) variability of engineering 

properties and load predictions, (2) errors in measuring material resistance, (3) errors in 
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prediction models used, and (4) sufficiency and applicability of sampling and testing 

methods. The ASD design equation used is the following: 

𝑅  (12)
𝐹𝑆 

𝑄  

where Rn is the nominal resistance (capacity), FS is the Factor of Safety, and ∑ 𝑄  is the 

sum of load effects (dead, live, and environmental) applied on a pile [21]. Nevertheless, 

ASD is becoming less popular due to the following limitations. (1) The Factor of Safety 

(FS) is a subjective value that is not based of probability of failure. The FS just depends 

on the design models and material parameters selected [2]. (2) ASD assumes similar 

uncertainties for load and resistance variables. (3) ASD is based only on experience and 

engineering judgment, which can lead to over conservatism [20]. Even though several 

sources of uncertainties can be considered by the designer when using ASD, their 

consideration is mainly qualitative rather than quantitative [21]. 

Figure 1 shows the way ASD reduces the probability of failure when probability 

density functions are evaluated. Failure is defined as loads exceeding the resistance, 

which graphically represented by the area formed by the load curve overlapping the 

resistance curve. The graph on the left shows when load and resistance are unmodified, 

hence, they are similar theoretically. The graph on the right shows when the resistance 

has been modified by the FS. The displacement of the resistance probability density 

function curve, due to the FS, reduces the probability of failure by decreasing the 

overlapped area. The new failure area is represented in orange color.   
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Figure 1: Probability density function for load and resistance when ASD is 
used (Cleary, 2019). 

When designing driven piles, ALDOT has followed an Allowable Stress Design (ASD) 

methodology and divides the resistance by a Factor of Safety (FS) of 2 and check if the 

loads are smaller than the allowable resistance. 

2.4 Load and Resistance Factor Design (LRFD) method 

Load and Resistance Factor Design (LRFD) is an alternative design methodology 

specifically and progressively developed for bridges since the mid-1980s [3]. LRFD 

originated due to the limitations of ASD methodology recognized in the 1990s [2]. 

Moreover, AASHTO required the LRFD method to design deep foundations supporting 

bridges in 2007. The LRFD design equation is the following: 

(13)ф𝑅  𝛾 𝑄 , 
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where ф is the resistance factor, Rn is the nominal resistance or capacity, γi is the load 

factor, Qi is the nominal load value. 

Under LRFD, both loads and resistance have different sources and levels of 

uncertainty. These uncertainties can be quantified using probability-based procedures to 

satisfy engineered design with consistent and specific levels of reliability. Paikowsky et 

al. [6] says that The principal difference between Reliability Based Design and the 

traditional or partial factors of safety design approaches lies in the application of 

reliability theory, which allows uncertainties to be quantified and manipulated 

consistently in a manner that is free from self-contradiction. In other words, the 

implementation of LRFD allows the separation of uncertainties from loads and 

resistances and, then, to use methods based on probability theory to satisfy a prescribed 

margin of safety [6]. It should be noted that since loads are better known than resistances, 

the load effect usually has smaller variability than the resistance effect.  

Figure 2 shows the way LRFD reduces the probability of failure when probability 

density functions are evaluated. Failure is defined as loads exceeding the resistance. This 

failure is graphically translated to point where the load curve overlaps the resistance 

curve. The graph on the left shows when load and resistance are unmodified, hence, they 

are similar theoretically. The graph on the right shows when the loads have been factored 

(increased) by the load factors and the resistance has been factored (decreased) by the 

resistance factor. The displacement of the load and resistance probability density function 

curve to opposite directions reduces the probability of failure by decreasing the 

overlapped area. The new failure area is represented in orange color.   
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Figure 2: Probability density function for load and resistance when LRFD is 
used (Cleary, 2019). 

As mentioned by Paikowsky et al [6], some of the specific benefits of 

implementing LRFD for pile design include the following: 

 Cost savings and improved reliability due to more efficiently balanced 

design. 

 More rational and rigorous treatment of uncertainties in the design. 

 Enhanced perspective on the overall design and construction processes. 

 Development of probability-based design method capable of stimulating 

advances in pile analysis and design. 

 Conversion of the codes into living and easier to revise documents. 

 The factors of safety previously used provide a framework to extrapolate 

existing design procedures into newer foundation concepts and materials. 

As mentioned before, ALDOT has used ASD design methodology with a FS of 2. 

Recently, ALDOT has begun to design using LRFD methods as Ashour et al [14] 

suggests using a resistance factor ф of 0.71 obtained by calibration by fitting FS.  
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2.5 Pile Axial Load Testing 

Load testing is the most accurate way to determine the nominal capacity of a pile 

[23]. Due to the high uncertainty of soils involve, it is imperative to perform actual load 

tests before or during construction to verify the preliminary design. The load tests are 

best known as field control methods. AASHTO states that when axial nominal resistance 

is determined by using actual load testing, the uncertainty in the axial nominal resistance 

is solely due to the reliability of the field determination method. They are mainly 

classified in two axial field control methods: Dynamic Load Test (DLT) and Static Load 

Test (SLT). 

2.5.1 Static Load Test. 

Static Load Test is the most accurate method to determine the pile load capacity. 

FHWA [24] says that depending upon the size of the project and other project variables, 

static load tests may be performed either during the design stage or construction stage. 

Usually, a SLT is performed inside or close to the site of the final pile installation. Once a 

pile is installed, a waiting period is required before the pile can be tested. ALDOT states 

that the waiting period shall be no less than 36 hours after EOID for H-Piles, and no less 

than 7 days for concrete piles [24].  This waiting period allows the disturbed soil to return 

to a more stable condition.  

The axial Static Load Test is regulated by ASTM D 1143-07 [27]. A system of 

reaction beams is attached to the load cell to assure minimum displacement as shown in 

Figure 3. Generally, the reaction beams are connected to reaction piles. ASTM D 1143-

07 [25] mentions several loading methods. However, the Quick Maintained (QM) Testing 

Method is the fastest and most efficient when determining the pile capacity [22]. In this 

method, the load is applied in increments of 5% of the anticipated nominal resistance. 

Load can be incremented until pile failure. The load gradient shall be composed by at 

least 20 points before reaching the geotechnical nominal resistance in order to generate a 

load-displacement curve [2]. The test shall not last more than one hour as cited by 
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Hannigan et al [19]. Once the load-displacement curve is plotted, several determination 

methods or acceptance criteria can be performed, such as the Davisson’s Methods, the 

Shape of Curvature Methods, the Limited Total Settlement Method, the De Beer’s 

Method, the Chin’s methods, and the Iowa DOT method. However, the Davisson’s 

Criterion is the most popular method and works better with QM test data [26].  

Figure 3: Static load test diagram (FHWA, 2016) 

The Davisson method is used to determine the load at which the pile fails and is 

based on the deformation of the pile head. The Davisson method uses a drawn line 

parallel to the elastic compression line (base line), which is offset by a specified amount 

of displacement depending on the pile size [22]. The parallel line is known as Offset 

Limit Line or Davisson Line. As shown on figure 4, the point of intersection between the 

Offset Limit Line and the load-displacement curve is considered to the pile nominal 

capacity. 
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Figure 4: Load-Displacement Curve and The Davisson offset method 
(Hannigan et al, 2016) 

The Elastic Deformation Line or Base Line can be plotted considering the 

following equation: 

𝛥  
 (14)

 
, 

where Δ is the elastic movement of the base line, Qva is the applied load, A is the cross 

sectional are of the pile, E is the modulus of elasticity of the pile material, and L is the 

embedded length of the pile. In addition, to draw the Offset Limit Line or Davisson Line, 

the following expression can be used: 

𝑋 0.15  
 (15)’ 

where X is the offset displacement from the base line (inches), and D is the pile diameter 

(inches). 

2.5.2 Dynamic Load Test. 

Dynamic Load Testing is an economically efficient method to test a pile because 

the time involving the setup of testing equipment is low and simple. Dynamic Load Tests 
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are performed typically during pile installation and a short time after the end of initial 

driving (EOID) and consists of obtaining compression wave data during hammer blows 

onto the pile head [2]. Basically, when the hammer strikes the top of the pile, a 

compressed stressed zone travels along the shaft of the pile at a constant wave speed. The 

speed depends mainly on the pile material. When the wave hits the pile toe, its amplitude 

is reduced by the action of static and dynamic soil resistance forces. Depending on the 

magnitude of the soil resistance, the wave will return to the top of the pile as a tensile 

(reflective) or compressive (incident) force [20]. Figure 5 shows this procedure. 

 Figure 5: Wave propagation in a pile (Hannigan et al, 2016). 

According to FHWA [24], Dynamic Load Tests use measurements of strain and 

acceleration taken near the pile head as a pile is driven or restruck with a pile driving 

hammer. These dynamic measurements can be used to determine the performance of the 

pile driving system, calculate pile installation stresses, assess pile integrity, and evaluate 

the nominal geotechnical resistance [23]. However, Pement [2] says that when the pile is 

driven into the soil, the soil beneath behaves dynamically. Thus, it resists the pile in a 
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dynamic manner. Consequently, it is not accurate to assume that the Dynamic resistance 

is equal to the Static resistance. 

As mentioned by Pement [2], to perform a DLT, the pile has usually two or more 

transducers and accelerometer attached during pile installation. The gauges are connected 

to a computerized device called Pile Driving Analyzer (PDA), which receives the wave 

and energy data coming from the pile in real time. The PDA provides force and 

acceleration data, which is used to establish force and motion within the pile [2]. FHWA 

[24] adds that test results shall be better evaluated using signal matching techniques to 

determine the relative soil distribution on the pile and the dynamic soil properties to use 

in wave equation analyses. 

There are several wave equations to determine the pile capacity such as dynamic 

formulas, wave equations, Case Pile Wave Analysis Program (CAPWAP), and iCAP. 

The last two methods are the most popular since they are programs that incorporate wave 

equations. Firstly, CAPWAP adopted the Smith [28] soil-pile model using the wave 

equation algorithm in the analysis to perform a signals-matching process with the 

combination of several analytical techniques [22]. CAPWAP basically partitions the pile 

into lumped masses linked with linear elastic springs and viscous dampers [23]. Second, 

iCAP is an automated version of CAPWAP designed to adjust for soil damping. Likins et 

al [28] mentions that iCAP results match very well with CAPWAP results for several 

types of piles and soils encountered. 

The two ways to control the pile capacity through dynamic testing are through 

End of Initial Driving (EOID) and Beginning of Restrike (BOR). EOID is performed 

usually immediately after the pile has been installed and consists of restriking the pile 

head few times to get dynamic data. BOR analysis can be performed after one- or 

several-time intervals after EOID and requires few restrikes on the pile head as well. 

BOR is usually necessary when the pile capacity was not reached at EOID or past BOR 

tests. Dynamic Load Testing allows a comparison of EOID resistance and BOR 

resistance. In this way, setup can be quantified. Pement [2] states that ALDOT executes 

DLTs during the initial pile installation so the operators can obtain the EOID data. 

ALDOT also performs a “setcheck” analysis, in which the pile is struck several more 
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times with the driving hammer. If the required pile capacity is not reached at EOID or 

setcheck analysis, ALDOT requires a 12-hour or 24-hour restrike, where the pile is struck 

again allowing setup to occur. 

In summary, dynamic testing is based on wave propagation principles and uses 

wave equations to determine the nominal pile capacity. The most popular methods are 

CAPWAP and ICAP, which are software that incorporate several wave equations. 

Although DLTs are not as accurate as SLTs, they are useful to perform EOID and BOR 

analysis and so it is possible to quantify the pile setup. 

2.6 Pile setup 

Pile setup is defined as the pile capacity increase over time and might generate 

significant cost savings. Haque et al [8] defined pile setup as the increase in axial 

resistance of driven piles after end of initial driving (EOID). According to Haque and 

Steward [29], the incorporation of pile setup in the design stage would produce 

meaningful construction cost savings because the increase in pile capacity can translate 

into smaller pile elements or shorter embedment lengths. Pile setup phenomenon is 

mainly a product of three mechanisms: (1) Increase of soil effective stress due to the 

dissipation of excess pore water pressure, (2) thixotropic effect, and (3) stress 

independent increase or “aging” effect. 

Firstly, during pile driving, the soil is displaced principally radially along the shaft 

and vertically below the toe. In the course of the driving process, the soil surrounding the 

pile loses strength due to an excessive increase of pore water pressure and distribution of 

soil pressure heavily disturbing the soil [30]. Immediately following EOID, this pore 

water excess begins to dissipate similarly to a consolidation process. Over time, the soil 

around the pile attempts to recover its original strength, which contributes to an increase 

in axial resistance of the pile [29]. Second, the phenomenon known was thixotropy also 

produces a regain of strength of the disturbed soil [31]. Thirdly, Schmertmann [32] 

indicates that even after the dissipation of excess pore water pressure is completed, pile 
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setup can continue due to aging mechanism. Haque and Steward [29] state that aging 

effects increases the shear modulus, stiffness, dilatancy, friction angle of the soil and, 

also, reduces the soil’s compressibility. 

Several empirical models have been developed to predict pile setup behavior. 

However, the most popular is the one developed by Skov and Denver [1] due to its 

simplicity. This model uses the following equation: 

𝑅   𝐴 𝑙𝑜𝑔  
𝑡 

1,  (16)
𝑅  𝑡  

where Rt is the total pile capacity at time t, Rto is the total pile capacity at reference time 

to, t is the time elapsed since end of initial pile driving, to is the initial reference time 

(usually time at EOID), and A is the setup parameter (log-linear). The parameter A 

depends on the soil type, pile material, pile type, pile size, and pile capacity [30]. Skov 

and Denver [1] suggest using A = 0.2 for sand and A = 0.6 for clay. However, Haque and 

Steward [29] reported an average value of A = 0.2 for soils in Alabama. They concluded 

to use this value after evaluation the pile setup of 18 axially loaded driven test piles 

(Steel-H and concrete piles) provided by ALDOT 

The incorporation of setup into the calibration of LRFD resistance factors has 

been studied by Yang and Liang [33] and Haque et al. [8]. They take as basis the limit 

equation the same used by AASHTO [34], which does not incorporate setup: 

ф 𝑅  𝛾 𝑞  𝛾 𝑞 , (17) 

where Rn is the predicted resistance, φR is the resistance factor for Rn, qD and qL are the 

predicted dead and live loads, respectively; and γQD and γQL are the load factors for qD 

and qL, respectively. In this way, Yang and Liang [33] proposes the setup effect of driven 

piles in the following equation: 

ф 𝑅  ф 𝑅  𝛾 𝑞  𝛾 𝑞 , (18) 

where φEOID and φsetup are the resistance factors for reference resistance at tEOID and setup 

resistance, respectively. REOID is the nominal resistance at end of initial driving, and Rsetup 

is the nominal setup resistance increase. Haque and Abu-Farsakh [8] evaluated the 

resistance factors for setup at time intervals of 30, 45, 60 and 90 days after EOD. Their 
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final recommendation is using a setup resistance factor фsetup of 0.35 at any time after the 

14 days. 

2.7 Summary of Literature Review 

This chapter describes the basic concepts required to understand the following 

chapters of this study. Essentially, pile foundations consist of deep foundations used to 

safely transfer structural loads to the ground and to avoid excess settlement or lateral 

movement. The most common type of pile foundations in Alabama are driven piles. 

Usually, the nominal pile capacity and depth must be estimated before driving the pile 

into the ground. Therefore, the basic pile design includes two types of methods. (1) Static 

analysis method and (2) Software program analysis. The first group assumes the pile as a 

geomaterial and are based mainly on empirical equations. The second group involves 

software programs that include one or several static analysis design methods. Two 

software programs are considered in this study. The first one is WBUZPILE, which is the 

software used by ALDOT for pile design. This program is based on SPT values and fully 

empirical equations. The second program is DRIVEN, which is the software used by 

FHWA. Basically, this software uses the Nordlund method for cohesionless soils and the 

α-method for cohesive soils. 

The geotechnical engineering department from ALDOT currently designs driven 

piles using WBUZPILE with a LRFD resistance factor of 0.71. This resistance factor was 

calibrated by ASD fitting from the previous FS of 2. Nonetheless, ALDOT desires to 

improve and update their pile design through considering a resistance factor calibrated by 

reliability of structures theory. In this way, the department assembled a 53 piles data 

base, which contains static load testing and soil boring logs information for each pile. In 

addition, 18 piles out of the 53 piles contain dynamic load testing information. While 

Prado [5] and Pement [2] performed calibrations using First Order Second Moment 

(FOSM), NCHRP 507 [6] reports that FOSM is over-conservative. In addition, Allen et 

al. [9] and Styler [7] suggest using Monte Carlo Simulation (MCS) and First Order 
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Reliability Method (FORM), respectively, for being more efficient and rigorous methods. 

Consequently, the primary objective of this study is to develop LRFD resistance factors 

unique to Alabama soils using FOSM, FORM, and MCS, in order to enhance accuracy 

and efficiency of pile design. Through this calibration, the reliability, consistency and 

efficiency of WBUZPILE and DRIVEN are evaluated. The second objective is to 

evaluate the effect of pile setup on the calibrated LRFD resistance factors. Finally, the 

third objective is to compare the calibrated resistance factors with the recommended 

resistance factors from published studies from the federal government and other states in 

terms of reliability, consistency and efficiency. 
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CHAPTER III - PILE ORGANIZATION AND RESEARCH DATABASE. 

This chapter shows and describes the database used for the statistical evaluation of 

resistance factors for the design and construction of driven piles in Alabama Soils. The 

data assembled by The Alabama Department of Transportation (ALDOT) is composed by 

53 piles installed and tested to failure. While all of these were tested using the static load 

testing, just 18 piles out of the initial 53 were also dynamically tested. Figure 6 shows the 

location of the piles utilized for this study.  

Figure 6: Test Pile locations in the State of Alabama (Pement, 2017) 

According to Haque and Steward [30] and as shown in figure 6, the near-surface 

soils of the Northern 1/3 portion of the state is composed by Limestone uplift, 

Appalachian Plateau, and Piedmont Plateau, which consist of a hard layer of bedrock 
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proximate to the surface. Therefore, driven piles used in these areas are toe-bearing piles 

usually driven to refusal and are not included in this study. The remaining areas are 

composed of interbedded layers of sand, clay, or silty sands. Thus, driven piles are the 

typical foundation method for highway structures. Haque and Steward [29] add that the 

standard types of piles used by ALDOT for bridge construction are steel H-Piles or 

square precast, prestressed concrete (PPC) piles. 

3.1 Driven Pile Database -Static Analysis. 

The data provided by The Alabama Department of Transportation (ALDOT) 

consists of 17 concrete piles and 36 steel H-Piles, which sum a total database of 53 piles. 

For this entire amount, the information available consists of boring logs, pile installation 

logs, and load test documents. The piles used for this study were specifically chosen 

because each one was statically load tested using ASTM D1143 [25] standard. 

3.1.1 Organization by Pile Material. 

Generally, it is suggested to organize the pile database into categories based on 

the pile material, soil type along the shaft, soil type beneath the toe, length, and 

geological regions. However, due to the few tests available, the pile database is 

categorized by pile material into three categories: All Piles, Steel H-Piles only, and 

Concrete Piles only. The full data base is shown in Table 3. Table 3 displays the pile ID, 

type (according to the material), size, time from EOID to SLT, SLT measured capacity, 

DRIVEN predicted capacity, and WBUZPILE predicted capacity. It should be noted that 

the “time from EOID to SLT” value represents the amount of time that lapsed since 

EOID finishes until the Static Load Test starts. This time is important for the pile setup 

evaluation. 
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Table 3: Pile Database provided by ALDOT for Static Analysis method 
evaluation (Pement, 2017) 

Pile ID  Type Size 

Time 
from 
EOID to 
SLT (days) 

SLT 
measured 
capacity 
(Ton‐f) 

DRIVEN 
predicted 
capacity 
(Ton‐f) 

WBUZPILE 
predicted 
capacity 
(Ton‐f) 

210  HP  12x53  13 114 50  118 

3002  HP  14x89  2 171 205  154 

3003  HP  12x53  2 97 52  98 

4301  HP  12x53  2 48 59  131 

4601  HP  14x73  2 155 126  206 

6503  HP  14x73  3 152 481  294 
Celeste Rd Bent 
2 

HP  12x63  9 162 468  427 

Moores Mill Rd  HP  12x53  7 135 26  109 

5702  HP  12x53  2 55 107  161 

6502  HP  12x53  3 113 107  74 

Celeste RD A1  HP  12x63  9 108 186  177 

SR 41  HP  12x53  3 54 255  243 

212  HP  10x42  4 89 149  171 

1901  HP  14x89  7 201 93  135 

5502  HP  12x53  2 81 37  62 

6504  HP  10x42  2 124 206  193 

213  HP  12x53  6 175 155  65 

214  HP  14x73  5 114 60  56 

301  HP  12x53  3 87 109  55 

1101 (pre‐splice)  HP  12x84  7 400 305  152 

5501  HP  10x42  6 111 185  140 

5703  HP  12x53  3 65 114  98 

5704  HP  14x102  2 126 116  113 

5705  HP  14x89  4 123 156  143 

5801  HP  12x53  2 142 95  77 

6303  HP  14x73  2 90 151  77 

6501  HP  14x73  5 153 148  114 

6506  HP  14x73  7 178 138  116 

CBD Bridge A1 HP  14x89  2 158 66  99 

CBD 7A Bent 2 HP  12x53  3 135 122  59 

3001  HP  12x53  2 71 111  108 

4001  HP  14x73  8 103 103  110 

4801  HP  10x42  14 123 73  47 
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Table 3, cont. 

Pile ID  Type Size 

Time 
from 
EOID to 
SLT (days) 

SLT 
measured 
capacity 
(Ton‐f) 

DRIVEN 
predicted 
capacity 
(Ton‐f) 

WBUZPILE 
predicted 
capacity 
(Ton‐f) 

6301  HP  14x73  7 102 85  127 

6302  HP  14x89  2 180 130  160 

6304  HP  12x53  4 210 133  204 

201  Concrete 14"x14" 7 102 149  163 

202  Concrete 24"x24" 6 200 191  235 

206  Concrete 16"x16" 7 120 1099  274 

207  Concrete 14"x14" 26 133 157  223 

211  Concrete 14"x14" 12 109 293  447 

501  Concrete 16"x16" 7 126 262  178 

502  Concrete 16"x16" 11 68 149  107 

503  Concrete 16"x16" 7 87 114  123 

504  Concrete 14"x14" 7 115 370  495 

505  Concrete 14"x14" 28 84 154  199 

5103  Concrete 16"x16" 2 125 184  187 

204  Concrete 16"x16" 8 176 114  216 

205  Concrete 20"x20" 15 180 371  596 

506  Concrete 14"x14" 25 112 207  228 

203  Concrete 24"x24" 7 270 582  1227 

208  Concrete 30"x30" 10 178 149  139 

209  Concrete 30"x30" 21 199 261  562 

As shown in Table 3, the steel H-Piles database is composed by 36 elements, 

which are widely spread around the state of Alabama as shown in figure 6. On other 

hand, the concrete piles database is composed by 17 piles, which were mainly within 

Mobile and Baldwin county areas along the coast.  
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3.2 Driven Piles Database – Dynamic analysis. 

Eighteen of these piles were also tested dynamically by The Alabama Department 

of Transportation (ALDOT) consisting of 11 steel H-Piles and 7 concrete. The piles used 

in this section were specifically chosen because each one was dynamically load tested 

using PDA and iCAP as signal matching software to adjust the data until a matching 

quality number of less than 5 was obtained. The remaining 35 piles do not have EOID 

data, hence they are not considered in this section. Table 4 displays the data for dynamic 

analysis evaluation. 

Table 4: Pile Database provided by ALDOT for Dynamic Analysis method 
evaluation (Pement, 2017) 

Pile ID  Type Size 

EOID 
measured 
capacity 
(Ton‐f) 

Time from 
EOID to 
SLT (days) 

SLT 
measured 
capacity 
(Ton‐f) 

Celeste Rd Bent 2 HP  12x63  112 9  162 
Moores Mill Rd  HP  12x53  78 7  135 
6502  HP  12x53  70 3  113 
Celeste RD A1  HP  12x63  54 9  108 
SR 41  HP  12x53  53 3  54 
1901  HP  14x89  107 7  201 
213  HP  12x53  102 6  175 
1101 (pre‐splice)  HP  12x84  173 7  400 
6501  HP  14x73  126 5  153 
CBD Bridge A1 HP  14x89  137 2  158 
CBD 7A Bent 2 HP  12x53  43 3  135 
202  Concrete 24"x24" 144 6  200 
207  Concrete 14"x14" 112 26  133 
501  Concrete 16"x16" 55 7  126 
502  Concrete 16"x16" 49 11  68 
503  Concrete 16"x16" 68 7  87 
204  Concrete 16"x16" 201 8  176 
205  Concrete 20"x20" 157 15  180 
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As shown in Table 4, if the data is separated by pile type, the data sizes would be 

too small (11 for steel H-Piles and 7 piles for concrete piles) for LRFD calibration 

purposes. Consequently, this data is not categorized and will be evaluated entirely as a 

single data set. 

3.3 Summary of Pile organization and research database. 

The database used in this study is the one provided by ALDOT. The data base 

consists of 53 piles, which have information of boring logs, pile installation logs, and all 

load test documents. The static analysis methods evaluation includes the 53 piles 

composed by 36 steel H-piles and 17 concrete piles. For calibration purposes, the SLT 

database is organized in three pile groups. (1) All piles group, (2) steel H-Piles group, and 

(3) concrete piles group. The Dynamic analysis method evaluation involves 18 piles out 

of the 53 piles data base because these 18 piles have EOID information based on PDA 

test with iCAP as signal matching software. Out of the 18 piles, 11 are steel H-Piles and 7 

are concrete piles. For calibration purposes, the DLT database is organized as a single 

generic group. 
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CHAPTER IV - PILE CAPACITY DESIGN USING WBUZPILE AND DRIVEN 

DESIGN PROGRAMS 

The objective of this chapter is to evaluate the performance of WBUZPILE and 

DRIVEN for pile design according to the relationships of the predicted capacity and the 

measured capacity. The predicted resistance is obtained from WBUZPILE or DRIVEN, 

and the measured resistance is obtained from SLT test and Davisson criterion.  

Exclusively for this chapter, the piles are grouped into 6 categories based on the 

soil type along the shaft and at the tip of the pile. The purpose of creating the categories 

was to potentially observe any tendencies of WBUZPILE or DRIVEN, with regards to 

how these programs estimate pile capacities with respect to the soil types (i.e. over-

estimate capacities for piles in only sand or only clay). Even if the number of data points 

for some soil categories is small, the results are relevant since this chapter does not 

involve calibration. Each category is based. The soil types are shown in Table 5. The 

predominant soil type along the shaft was determined by a 35% - 65% criteria. If there 

was 65% or more of either sand or clay along the shaft of the pile, that soil type was 

listed as the predominant soil type. If the soil was between 35% and 65% of the pile shaft 

length, the soil was considered mixed. The soil type that the pile was embedded into was 

taken as the soil at the tip. This information was obtained from the provided boring logs 

closest to the test pile location on each site. Only sand and clay were considered, because 

WBUZPILE data input is restricted to those two soil types. Similarly, DRIVEN data 

input requires the user to define the soil in each layer as either cohesionless or cohesive. 

Table 5: Pile categories according to soil types encountered 

Pile Category 1 2 3 4 5 6 
Soil at Tip Sand Sand Sand Clay Clay Clay 

Soil along Shaft Sand Clay Mixed Sand Clay Mixed 
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4.1 WBUZPILE Analysis 

For this section, the predicted data analysis was begun by designing each pile 

(using the WBUZPILE design program) as if it were not already installed. The goal of 

this analysis was to acquire pile capacities based on the WBUZPILE method of analysis, 

while attempting to simulate the conditions at the time of the static load test, to establish 

consistency and therefore accurate comparisons. First, the relevant information such as 

pile type, groundwater elevation, and elevation of zero depth was entered into the 

necessary fields. This information was obtained from the pile loading documents that 

were provided for each pile. Next, the boring logs were referenced, and the soil layer 

information was entered into the program appropriately (see Figure 7). It was assumed 

that the boring logs provided were indicative of the soils at the load test site. If multiple 

boring logs were provided, the boring closest to that of the load test site were used. 

WBUZPILE requires SPT N-values in addition to the soil type, in order to run the 

analysis. The boring logs displayed N-values throughout the soil profile, and these values 

were entered into the program. The N-values were multiplied by 1.33 to mimic ALDOTs 

design procedures, which account for hammer efficiency [35]. Additionally, ALDOT 

uses the N-values to determine when one soil layer has ended and another has begun. If 

the N-value changed by more than five blow counts within the same soil layer, a new soil 

layer was added in WBUZPILE with the same soil classification as the previous layer. 

Also, a new soil layer was added when the classification changed between sand and clay 

according to the boring logs. Since ALDOT only uses two soil layer types in their pile 

design (sand and clay), all silts and clays were entered as clay into WBUZPILE, and all 

other soils were entered as sand. Sand was the predominant soil type encountered at each 

pile, however rock-like material was occasionally encountered at some sites and was 

entered as sand into the program.  

Once the soil profiles were entered for each pile, capacity results were displayed 

through the program. WBUZPILE generates results in kips per linear foot of pile, as shown 

in Figure 8. To determine accurate capacities, it was important to establish accurate ground 
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elevations at the pile. The ground elevation at the pile was determined from the static load 

test documents, however the soil profiles were entered from the boring logs. The boring 

logs did not always have the same ground elevations as the SLT documents. Therefore, if 

the boring log elevation was higher than the actual ground elevation at the SLT site, the 

side resistance was subtracted from the difference in elevation. For example, if the ground 

elevation at the boring was 23 ft. as shown in Figure 8, and the ground elevation at the pile 

during the SLT was 10 ft., the side resistance at 10 ft. (34.3 kips) would be subtracted from 

the total capacity. The tip resistance would not be subtracted because it changes for each 

soil layer; that is, it does not continuously increase like the side resistance. The tip 

resistance was taken at the pile tip elevation, which was provided by the load test 

documents. In some cases, the boring elevation was lower than the actual elevation. If this 

was the case, a sandy clay layer with an N-value of 10 was added at the top of the boring 

layers. The total capacity was taken at the pile tip elevation, which was specified in the 

SLT documents. For example, in Figure 8, if the pile tip elevation was specified as -5.00 

ft., the total capacity would be 194.80 kips.  

. 
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 Figure 7: WBUZPILE soil/pile data input. 

34 



   
 

 

 

 

 
 
 

 

 

  

  

 

 

 

Figure 8: WBUZPILE output data. 

4.2 DRIVEN Analysis 

A DRIVEN analysis was performed in similar fashion to the WBUZPILE analysis, 

where the predicted capacities came from the DRIVEN program. The purpose of this 

analysis was two-fold: a.) to develop additional resistance factors specifically for DRIVEN, 

and b.) to directly compare WBUZPILE with a well-established and widely used design 

program. 

 DRIVEN is similar to WBUZPILE in that, it uses the same site information as 

WBUZPILE to determine capacities. However, DRIVEN allows the user to define more 
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detailed site characteristics. For instance, there is an option to specify soft compressible 

soils and/or scourable soils overlying the bearing strata, however these options were not 

specified for any of the piles. For each soil layer, there is an option to specify a percent 

driving strength loss. Similarly, this remained unspecified for each pile. For steel H-piles, 

the user may specify an H-pile or box tip, and an H-pile or box perimeter for the analysis. 

In this study, the H-pile tip and H-pile perimeter were selected for the H-piles. For 

cohesionless soil layers, the N-values were entered (up to five values per layer) in the 

program. The N-values were not multiplied by 1.33 during the DRIVEN analysis, as was 

done for the WBUZPILE analysis. However, DRIVEN allows the user to correct the N-

values for the influence of the effective overburden pressure, and this correction was 

chosen for all piles in this study. Finally, for cohesive soils, DRIVEN requires an adhesion 

value to be selected. In all cases, the general adhesion value was selected for cohesive soils.  

The capacity results provided by DRIVEN are provided at depth intervals, 

but are not displayed per linear foot of pile, as detailed in Figure 9. Therefore, the 

capacities obtained from DRIVEN often required interpolation. Since pile tip resistance 

does not linearly increase with depth, the tip resistance was taken for the layer that the 

pile tip was in. However, the skin resistance was linearly interpolated if the value was 

between output result depths. For example, in Figure 9, if the tip was at a depth of 15 m, 

the tip resistance would be taken as 424.74 kN, while the skin resistance would be 

interpolated between 919.97 KN and 1168.84 KN (the values between 14.01 m and 17.01 

m respectively), as highlighted in Figure 9. Similarly, if soil near the surface of the pile 

needed to be subtracted to match the elevations at the load test site, the amount of skin 

resistance to subtract would be interpolated as well. 
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Figure 9: DRIVEN output results and subsequent skin resistance 
interpolation (Hannigan et al., 2006). 

4.3 Comparison between WBUZPILE and DRIVEN 

Since WBUZPILE is an internally designed program used exclusively within the 

ALDOT geotechnical engineering department, a comparison was made between 

WBUZPILE and DRIVEN, which is a widely used program that uses well-known design 

methods. WBUZPILE was directly compared to DRIVEN. This comparison was 

performed to verify the tendencies of WBUZPILE compared to a well-established and 

widely used design program. When WBUZPILE is directly compared to DRIVEN, it can 
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be seen in Figure 10 that, on average, WBUZPILE produces a 13% higher capacity than 

DRIVEN. As shown in Figures 11 and 12, WBUZPILE produces a 6% higher capacity 

than DRIVEN for H-piles, and 26% higher capacity for concrete piles, respectively.  

Figure 10: Boxplot of capacity comparison between WBUZPILE and 
DRIVEN for the entire pile database.  
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Figure 11: Boxplot of capacity comparison between WBUZPILE and 
DRIVEN for H-piles. 

Figure 12: Boxplot of capacity comparison between WBUZPILE and 
DRIVEN for concrete piles. 
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4.4 Predicted Results Compared to Static Load Tests 

This section involves a comparison of WBUZPILE and DRIVEN with the results 

from the static load tests. In this study, the corresponding evaluation is performed using 

the variable named as error, which.is obtained from the overall results from Table 3 and 

by calculating the ratio of the predicted resistance (Rp) to the measured resistance (Rm). 

The error value is calculated and shown in Table 6 as (Rp/Rm). An error value of 

one indicates zero error, meaning the predicted value matched the measured value. 

Table 6: Error values for WBUZPILE and DRIVEN 

Pile Type Soil Category 
Rp/Rm 
DRIVEN 

Rp/Rm 
WBUZPILE 

210  HP  1  0.436  1.037 

3002 HP  1  1.201  0.901 

3003 HP  1  0.537  1.009 

4301 HP  1  1.224  2.711 

4601 HP  1  0.812  1.328 

6503 HP  1  3.167  1.931 

Celeste Rd Bent 2  HP  1  2.890  2.638 

Moores Mill Rd HP  1  0.195  0.807 

5702 HP  3  1.944  2.930 

6502 HP  3  0.946  0.655 

Celeste RD A1  HP  3  1.726  1.636 

SR 41  HP  3  4.773  4.542 

212  HP  4  1.669  1.919 

1901 HP  4  0.464  0.673 

5502 HP  4  0.457  0.767 

6504 HP  4  1.660  1.559 

213  HP  5  0.883  0.371 

214  HP  5  0.526  0.491 

301  HP  5  1.257  0.635 

1101 (pre‐splice)  HP  5  0.761  0.380 

5501 HP  5  1.667  1.264 

5703 HP  5  1.746  1.500 

5704 HP  5  0.918  0.897 

5705 HP  5  1.270  1.164 
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Table 6, cont. 

Pile Type Soil Category 
Rp/Rm 
DRIVEN 

Rp/Rm 
WBUZPILE 

5801 HP 5  0.670 0.540 
6303 HP 5  1.674 0.853 
6501 HP 5  0.968 0.744 
6506 HP 5  0.774 0.649 
CBD Bridge A1  HP 5  0.420 0.628 
CBD 7A Bent 2  HP 5  0.903 0.439 
3001 HP 6  1.552 1.517 
4001 HP 6  1.007 1.075 
4801 HP 6  0.597 0.380 
6301 HP 6  0.840 1.247 
6302 HP 6  0.723 0.889 
6304 HP 6  0.633 0.973 

201  Concrete 1  1.456  1.595 

202  Concrete 1  0.953  1.177 

206  Concrete 1  9.158  2.284 

207  Concrete 1  1.178  1.673 

211  Concrete 1  2.685  4.098 

501  Concrete 1  2.081  1.409 

502  Concrete 1  2.214  1.586 

503  Concrete 1  1.311  1.408 

504  Concrete 1  3.217  4.306 

505  Concrete 1  1.833  2.367 

5103 Concrete 2  1.474  1.498 

204  Concrete 3  0.645  1.226 

205  Concrete 3  2.060  3.310 

506  Concrete 3  1.850  2.036 

203  Concrete 4  2.155  4.544 

208  Concrete 4  0.841  0.783 

209  Concrete 6  1.312  2.824 
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Table 7: Average error by soil type (steel H-piles) 

Soil Category Number of Concrete 

Piles 

Mean error (Rp/Rm) 

DRIVEN 

Mean error (Rp/Rm) 

WBUZPILE 

1  8 1.308 1.545 

3  4 2.347 2.441 

4  4 1.062 1.229 

5  14 1.031 0.754 

6  6 0.892 1.013 

Table 8: Average error by soil type (concrete piles) 

Soil Category Number of Concrete 

Piles 

Mean error (Rp/Rm) 

DRIVEN 

Mean error (Rp/Rm) 

WBUZPILE 

1  10 2.609 2.190 

2  1 1.474 1.498 

3  3 1.518 2.191 

4  2 1.498 2.664 

6  1 1.312 2.824 

Tables 7 and 8 shows the mean error values with respect to design program and 

soil type encountered, and also shown are the number of piles for each soil type. As 

shown in Table 7, the tendency for WBUZPILE and DRIVEN was to over-predict the 

pile capacity by 21.3% and 21.9% respectively, for steel H-piles.  In Table 8, it is shown 

that WBUZPILE and DRIVEN yield similar tendencies and over-predict the pile capacity 

by 124.3% and 114.3% respectively, for concrete piles. The values in Tables 7 and 8 are 

shown graphically in Figures 13 and 14. As shown in the Figures, the tendency for both 

methods is to over-predict the pile capacity by approximately 53%.  
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Figure 13: Graphical results for WBUZPILE capacity versus SLT analysis. 
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Figure 14: Graphical results for DRIVEN capacity versus SLT analysis. 
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The results for each separate soil category type encountered are shown graphically 

for the WBUZPILE analysis in Figures 15 to 20. It is seen that for H-piles, WBUZPILE 

was least accurate for soil type 3 (sand at tip, mixed along shaft) with a mean error of 

2.44, and most accurate for soil type 6 (clay at tip, sand along shaft) with a mean error of 

1.01. For concrete piles, WBUZPILE was least accurate for soil type 6 (clay at tip, mixed 

along shaft) with a mean error of 2.82, and most accurate for soil type 2 (sand at tip, clay 

along shaft), with a mean error of 1.50. The results for each soil type encountered are not 

shown graphically for the DRIVEN analysis, however DRIVEN showed similar trends to 

WBUZPILE. 

Concrete H‐Pile 

600 

500 

400 

300 

200 

100 

0 

Soil Catego 
WBUZPILE 
Mean Error 

ry 1 
anaysis 
, Total: 1.90 

Mean Error 
Mean Error 

, H‐pile: 1.55 
, Concrete: 2.19 

0 100 200 300 400 500 600 

Measured Capacity (Davisson, tons) 

Figure 15: WBUZPILE results for soil type 1 (sand at tip, sand along shaft). 
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Figure 16: WBUZPILE results for soil type 2 (sand at tip, clay along shaft). 
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Figure 17: WBUZPILE results for soil type 3 (sand at tip, mixed along shaft). 
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Figure 18: WBUZPILE results for soil type 4 (clay at tip, sand along shaft). 
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Figure 19: WBUZPILE results for soil type 5 (clay at tip, clay along shaft). 
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Figure 20: WBUZPILE results for soil type 6 (clay at tip, clay along shaft). 
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Overall, WBUZPILE performs similarly to DRIVEN. Both DRIVEN and 

WBUZPILE tend to over-predict the pile capacity for concrete and H-piles. On average, 

WBUZPILE predicts a 19% higher pile capacity than DRIVEN. Furthermore, 

WBUZPILE predicts a 11% higher capacity for H-piles and a 3% higher capacity for 

concrete piles when compared to DRIVEN. Both DRIVEN and WBUZPILE are better at 

predicting the capacity of H-piles. 

It is shown in this study that for H-piles, WBUZPILE was least accurate at 

predicting the pile capacity for soil type 3, where the tip was in sand, and mixed soils 

were along the shaft. WBUZPILE was most accurate at predicting the pile capacity for 

soil type 6, where the tip was embedded in clay, and sand was along the pile shaft. 
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For concrete piles, WBUZPILE was least accurate at predicting pile capacity for 

soil type 6, where the tip was embedded in clay, and mixed soils were along the pile 

shaft. WBUZPILE was most accurate at predicting the pile capacity for soil type 2, where 

the tip was in sand, and clay was along the shaft – although there are limited data points 

to confirm these conclusions. 
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CHAPTER V – EVALUATION OF SKOV AND DENVER MODEL FOR 

ALABAMS SOILS 

As previously stated, pile setup can generate significant cost savings to the 

government and taxpayers. While there are several models to predict pile setup, one of 

the most popular methods is the Skov and Denver model [1]. The main objective of this 

chapter is to evaluate the performance of the Skov and Denver model for pile setup 

estimation in Alabama soils. This section divided in two parts. The first part considers the 

Skov and Denver model to estimate a later pile capacity from an earlier known and 

actually measured pile capacity. The second part considers the Skov and Denver model to 

estimate an earlier pile capacity from a later known and actually measured pile capacity. 

In other words, the second part follows a reversal approach from the first part.  

The Skov and Denver [1] model suggest using a setup factor of A = 0.2 for sand 

and A = 0.6 for clay. Nonetheless, Haque and Steward [29] established A = 0.2 for soil in 

Alabama, hence this value is used in this study. Moreover, EOID capacity is considered 

to be developed at 15 minutes for every pile, and SLT capacity at the time period from 

EOID to SLT (which is different for each pile). 

The research data base used for this chapter consists of 18 driven piles tested by 

ALDOT. The rest of piles are not used in this chapter because they do not have dynamic 

load testing data. Each of the 18 piles contains information about their measured EOID 

capacity, measured SLT capacity, and time from EOID to SLT.  

 The variable named error is used to evaluate the performance of the prediction 

method. The error is calculated from the ratio of the estimated resistance to the measured 

resistance. The closer the value to 1, the more accurate the model is. 

49 



   
 

 

 

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1 Evaluation of the Skov and Denver Model for estimating pile setup 

The objective of this subsection is to evaluate the performance of the Skov and 

Denver [1] model for estimating pile setup. The Skov and Denver model is used to 

estimate a future pile capacity based on an earlier measured pile capacity (EOID for this 

subsection) and a specific time period. More specifically, this subsection involves 

comparing a measured SLT capacity and an estimated SLT capacity. The estimated SLT 

resistance is obtained by incorporating the Skov and Denver model to the results of 

dynamic load testing at EOID. The error is calculated as the ratio of the predicted SLT 

capacity to the measured SLT capacity. 

5.1.1 Evaluation of Skov and Denver model for the entire data set. 

This subsection evaluates the Skov and Denver [1] model using the entire data 

base with EOID and SLT results. This data base is composed by 11 steel H-piles and 7 

concrete piles. The analysis and results are shown in Table 9 and Figure 21, which 

present the measured SLT capacities, the estimated SLT capacities obtained from the 

measured EOID capacities, and the error for each pile. It should be noted that for the 

entire data set, the average time period from EOID to SLT is 7.6 days. 
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Table 9: Error-values for pile setup estimation for the entire data set. 

Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

Time from 
EOID to 

SLT (Days) 

SLT 
measured 
(Ton‐f) 

SLT 
estimated 
(Ton‐f) 

Error 

205  Concrete  157 15 180 256  1.420 

501  Concrete  55 7 126 87  0.687 

503  Concrete  68 7 87 107  1.226 

6501  H‐Pile  126 5 153 193  1.260 
Celeste Rd 
Bent 2 

H‐Pile  112 9 162 178  1.097 

Celeste RD 
A1 

H‐Pile  54 9 108 85  0.791 

Moores 
Mill RD 

H‐Pile  78 7 135 122  0.904 

CBD 7A 
Bent 2 

H‐Pile  43 3 135 65  0.479 

SR 41 H‐Pile  53 3 54 79  1.479 

202  Concrete  144 6 200 224  1.119 

204  Concrete  201 8 176 317  1.803 

207  Concrete  112 26 133 188  1.416 

502  Concrete  49 11 68 79  1.170 

213  H‐Pile  102 6 181 158  0.873 

1101  H‐Pile  173 7 400 270  0.676 

1901  H‐Pile  107 2 201 156  0.775 

6502  H‐Pile  70 3 113 104  0.920 
CBD 

Bridge A1 
H‐Pile  137 2 158 200  1.265 
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Figure 21: Comparison of estimated SLT and measured SLT for the entire 
data set. 

When comparing the estimated SLT capacity with the measured SLT capacity for 

the entire pile set, the average error is 1.076, which represents that Skov and Denver 

model over-estimates the SLT capacity for 7.6%.  

5.1.2 Evaluation of Skov and Denver model for the steel H-piles data set. 

This subsection evaluates the Skov and Denver model using the only the steel H-

piles data base with EOID and SLT results. This data base is composed by 11 steel H-

piles. The analysis and results are shown in Table 10 and Figure 22, which present the 

measured SLT capacities, the estimated SLT capacities obtained from the measured 

EOID capacities, and the error for each pile. It should be noted that for the entire data set, 

the average time period from EOID to SLT is 5.1 days. 
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Table 10: Error-values for pile setup estimation for the steel H-piles data set. 

Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

Time from 
EOID to SLT 

(Days) 

SLT 
measured 
(Ton‐f) 

SLT 
estimated 
(Ton‐f) 

Error 

6501  H‐Pile  126 5 153 193  1.260 
Celeste Rd 
Bent 2 

H‐Pile  112 9 162 178  1.097 

Celeste RD 
A1 

H‐Pile  54 9 108 85  0.791 

Moores Mill 
RD 

H‐Pile  78 7 135 122  0.904 

CBD 7A 
Bent 2 

H‐Pile  43 3 135 65  0.479 

SR 41 H‐Pile  53 3 53.5 79  1.479 

213  H‐Pile  102 6 181 158  0.873 

1101  H‐Pile  173 7 400 270  0.676 

1901  H‐Pile  107 2 201 156  0.775 

6502  H‐Pile  70 3 113.4 104  0.920 
CBD Bridge 

A1 
H‐Pile  137 2 158 200  1.265 
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Figure 22: Comparison of estimated SLT and measured SLT for the steel 
H-piles data set. 
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When comparing the estimated SLT capacity with the measured SLT capacity for 

the steel H-piles data set, the average error is 0.956, which represents that Skov and 

Denver model under-estimates the SLT capacity for 4.4%.  

5.1.3 Evaluation of Skov and Denver model direction for the concrete piles data set. 

This subsection evaluates the Skov and Denver model using the only the concrete 

piles data base with EOID and SLT results. This data base is composed by 7 concrete 

piles. The analysis and results are shown in Table 11 and Figure 23, which present the 

measured SLT capacities, the estimated SLT capacities obtained from the measured 

EOID capacities, and the error for each pile. It should be noted that for the entire data set, 

the average time period from EOID to SLT is 11.4 days. 

Table 11: Error-values for pile setup estimation for the concrete piles data 
set. 

Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

Time from 
EOID to 

SLT (Days) 

SLT 
measured 
(Ton‐f) 

SLT 
estimated 
(Ton‐f) 

Error 

205  Concrete  157 15 180 256  1.420 

501  Concrete  55 7 126 87  0.687 

503  Concrete  68 7 87 107  1.226 

202  Concrete  144 6 200 224  1.119 

204  Concrete  201 8 176 317  1.803 

207  Concrete  112 26 133 188  1.416 

502  Concrete  49 11 67.5 79  1.170 
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Figure 23: Comparison of estimated SLT and measured SLT for the 
concrete piles data set. 

When comparing the estimated SLT capacity with the measured SLT capacity for 

the concrete piles data set, the average error is 1.263, which represents that Skov and 

Denver model over-estimates the SLT capacity for 26.3%.  

5.2 Evaluation of the Skov and Denver Model for estimating pile setup in reverse 

direction 

The Skov and Denver model is generally used to estimate the future pile capacity 

based on an earlier capacity. Nevertheless, this subsection follows a reversal approach by 

estimating an earlier capacity from a real future capacity. Thus, the objective of this 

subsection is to establish whether the Skov and Denver model can be used to estimate an 

earlier resistance based on the results of an actual resistance test performed later. More 

specifically, this subsection involves comparing a measured EOID capacity and an 

estimated EOID capacity. The estimated EOID resistance is obtained by incorporating the 
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Skov and Denver model to the results of static load tests. The error is calculated as the 

ratio of the predicted EOID capacity to the measured EOID capacity. 

5.2.1 Evaluation of Skov and Denver model in reverse direction for the entire data 

set. 

This subsection evaluates the Skov and Denver model in reverse direction using 

the entire data base with EOID and SLT results. This data base is composed by 11 steel 

H-piles and 7 concrete piles. The analysis and results are shown in Table 12 and Figure 

24, which present the measured EOID capacities, the estimated EOID capacities obtained 

from the measured SLT capacities, and the error for each pile. It should be noted that for 

the entire data set, the average time period from EOID to SLT is 7.6 days. 

Table 12. Error-values for reverse pile setup estimation for the entire data 
set. 

Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

EOID 
estimated 
(Ton‐f) 

Error 

205  Concrete  157 110  0.704 

501  Concrete  55 80  1.455 

503  Concrete  68 56  0.815 

6501  H‐Pile  126 100  0.794 

Celeste Rd Bent 
2 

H‐Pile  112 102  0.911 

Celeste RD A1  H‐Pile  54 68  1.264 

Moores Mill RD  H‐Pile  78 86  1.106 

CBD 7A Bent 2  H‐Pile  43 90  2.087 

SR 41 H‐Pile  53 36  0.676 

202  Concrete  144 129  0.894 

204  Concrete  201 112  0.555 

207  Concrete  112 79  0.706 

502  Concrete  49 42  0.855 

213  H‐Pile  102 117  1.146 

1101  H‐Pile  173 256  1.480 

1901  H‐Pile  107 138  1.291 

6502  H‐Pile  70 76  1.087 

CBD Bridge A1  H‐Pile  137 108  0.791 
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Figure 24. Comparison of estimated EOD and measured EOD for the 
entire data set. 

When comparing the estimated EOID capacity with the measured EOID capacity 

for the entire pile set, the average error is 1.034, which represents that Skov and Denver 

model over-estimates the EOID capacity for 3.4%.  

5.2.2 Evaluation of Skov and Denver model in reverse direction for the steel H-piles 

data set. 

This subsection evaluates the Skov and Denver model in reverse direction using 

the only the steel H-piles data base with EOID and SLT results. This data base is 

composed by 11 steel H-piles. The analysis and results are shown in Table 13 and Figure 

25, which present the measured EOID capacities, the estimated EOID capacities obtained 

from the measured SLT capacities, and the error for each pile. It should be noted that for 

the steel H-piles data set, the average time period from EOID to SLT is 5.1 days. 

Table 13. Error-values for reverse pile setup estimation in reverse for the 
steel H-piles data set. 
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Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

EOID 
estimated 
(Ton‐f) 

Error 

6501  H‐Pile  126 100 0.794 

Celeste Rd 
Bent 2 

H‐Pile  112 102 0.911 

Celeste RD A1  H‐Pile  54 68 1.264 

Moores Mill 
RD 

H‐Pile  78 86 1.106 

CBD 7A Bent 2  H‐Pile  43 90 2.087 

SR 41 H‐Pile  53 36 0.676 

213  H‐Pile  102 117 1.146 

1101  H‐Pile  173 256 1.480 

1901  H‐Pile  107 138 1.291 

6502  H‐Pile  70 76 1.087 

CBD Bridge A1  H‐Pile  137 108 0.791 
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Figure 25. Comparison of estimated EOD and measured EOD for steel H-
piles data set. 

When comparing the estimated EOID capacity with the measured EOID capacity 

for the steel H-piles pile set, the average error is 1.148, which represents that Skov and 

Denver model over-estimates the EOID capacity for 14.8%.  
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5.2.3 Evaluation of Skov and Denver model in reverse direction for the concrete 

piles data set. 

This subsection evaluates the Skov and Denver model in reverse direction using 

the only the concrete data base with EOID and SLT results. This data base is composed 

by 7 concrete piles. The analysis and results are shown in Table 14 and Figure 26, which 

present the measured EOID capacities, the estimated EOID capacities obtained from the 

measured SLT capacities, and the error for each pile. It should be noted that for the 

concrete piles data set, the average time period from EOID to SLT is 11.4 days. 

Table 14: Error-values for reverse pile setup estimation for the concrete piles 
data set. 

Pile  Pile Type 
EOID 

measured 
(Ton‐f) 

EOID 
estimated 
(Ton‐f) 

Error 

205  Concrete  157 110 0.704 

501  Concrete  55 80 1.455 

503  Concrete  68 56 0.815 

202  Concrete  144 129 0.894 

204  Concrete  201 112 0.555 

207  Concrete  112 79 0.706 

502  Concrete  49 42 0.855 
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Figure 26: Comparison of estimated EOD and measured EOD for concrete 
piles data set. 

When comparing the estimated EOID capacity with the measured EOID capacity 

for the concrete piles pile set, the average error is 0.855, which represents that Skov and 

Denver model under-estimates the EOID capacity for 14.5%.  

5.3 Summary of the Evaluation of the Skov and Denver Model for Alabama Soils 

The evaluation of the Skov and Denver model to estimate the SLT resistance 

based on measured EOID resistance shows that the Skov and Denver model over-

estimates the SLT capacity by 7.6% for a group composed by steel H-piles and concrete 

piles. For exclusively steel H-piles, the Skov and Denver model under-estimates the SLT 

capacity by 4.4%. For exclusively concrete piles, the Skov and Denver model over-

estimates the SLT capacity by 26.3%. 

The evaluation of the Skov and Denver model to estimate the EOID resistance 

based on measured SLT resistance shows that the Skov and Denver model over-estimates 
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the EOID capacity by 3.4% for a group composed by steel H-piles and concrete piles. For 

exclusively steel H-piles, the Skov and Denver model over-estimates the EOID capacity 

by 14.8%. For exclusively concrete piles, the Skov and Denver model under-estimates 

the EOID capacity by 14.5%. 
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CHAPTER VI - CALIBRATION METHODOLOGY 

This chapter describes the concepts and probabilistic-based methodologies applied 

to a LRFD calibration. These methodologies are based on random variables and the 

statistical characterization of their bias. This chapter also explains how to conduct an 

actual calibration and apply it to the development of LRFD design specifications.  

As mentioned by Allen et al [9], there are three levels of probabilistic design. (1) 

Level I, (2) Level II, (3) and Level III. Firstly, the Level I is the simplest but least 

accurate. For Level I design methods, the uncertainties and safety are measured by a 

factor of safety. In other words, ASD design methodology can be considered to be Level 

I. Second, for the Level II, the uncertainties and safety are represented in terms of the 

reliability index (β). This reliability index measures the probability of failure of any 

design. In this way, LRFD design methodology can be considered to be Level II. 

Generally, Level II methods involve iterative techniques best performed by computer 

algorithms. Finally, Level III involves complex statistical data beyond what is usually 

available within geotechnical and structural engineering. Consequently, Levels I and II 

are the most viable methodologies used for geotechnical and structural design. Allen et 

al. [9] adds that the goal of Level I or II analysis is to develop factors that increase the 

nominal load or decrease the nominal resistance to give a design with an acceptable and 

consistent probability of failure. 

This chapter begins by introducing the concept of random variables and bias 

values. Then, the statistical characterization of the load and resistance variables as well as 

specific pre-calibration considerations are described. Next, the First Order Second 

Moment (FOSM) calibration, the First Order Reliability method (FORM) calibration, and 

the Monte Carlo Simulation (MCS) calibration concept and procedure. Finally, the 

Reliability Based Efficiency factor is described.  
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6.1 Random variables and Bias. 

This section defines the concept of random variables and bias, which both 

compose the basis to perform the LRFD calibration. First of all, Allen et al [9] define a 

random variable as a variable that does not have an exact value and it pertains to a set of 

values, or a range, and the probability of occurrence. Nowak and Collins [35] add that a 

random variable is a function that maps events onto intervals on the axis of real numbers. 

A probability function is defined on events and this definition can be extended by random 

variables. Figure 27 shows a schematic representation of a random variable as a function. 

For LRFD methodology in driven piles, the random variables consist of loads (dead and 

live loads) and resistances (capacity). 

Figure 27: Schematic representation of a random variable as a function 
(Nowak and Collins, 2013). 

Second, the definition of bias is the ratio of the true parameter value and the 

expected value. Within structural reliability field, the bias is the ratio of the measured 

(actual) to the nominal (predicted) value. The bias allows the soil characteristics, 

materials, and construction uncertainties to be included into a design method. Thus, a 

calibration must be performed for each prediction method independently. In this study, 

the bias for loads (λQ) and resistance (λR) are calculate as follows: 
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𝜆   
𝑄

 and (19)
𝑄  

𝜆   
𝑅
𝑅  

, (20) 

where Qm is the measured load, Qp is the predicted load, Rm is the measured resistance, 

and Rp is the predicted resistance. It is important to mention that a bias must be calculated 

for every pair (measured and predicted) of data, and then, they shall be grouped to obtain 

some of their basic descriptive statistical features, which are explained in the next 

section. 

6.2 Statistical Characterization and Calibration considerations 

This section describes the statistical characterization of the load and resistance 

random variables as well as specific pre-calibration considerations, for which both are 

required prior to performing the LRFD calibration. Once the bias values have been 

calculated for each pile, the mean, standard deviation, and the coefficient of variation 

shall be calculated for each data case. In this study, the data cases consist of deciding 

whether to include statistical outliers obtained through different criteria. Since the LRFD 

calibration methods are probabilistic-based procedures, the probability density function 

and cumulative density functions must be computed for each data set as well as the type 

of probability distribution. The most common type of distributions for piles are normal 

and lognormal [6]. Besides the statistical characterization of the data, the target reliability 

index and load factor shall be established before performing the actual calibration. The 

target reliability index measures the safety and is related to the probability of occurrence 

of a failure event. The load factors are not actually calibrated in this study and are 

obtained from NCHRP 507 [6]. 
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6.2.1 Mean, Standard deviation, and Coefficient of Variation of random variables. 

As mentioned by Allen et al [9], the mean, standard deviation, and coefficient of 

variation from the random variables considered in the limit state equation are necessary 

to perform the resistance factor calibration. In this study, the mean, standard deviation, 

and coefficient of variation values correspond to the bias random resistance values and 

bias random load variables since they are present in the limit state equation. Paikowsky et 

al. [6] states that load and resistance random variables can be taken as normal or 

lognormal distributed variables and both type of distributions are defined in the following 

sections. For a normal distribution, the mean (𝜇 ) is the sum of the individual values from 

a sample divided by the total number of values n. 

𝑋 𝑋 ⋯  𝑋  (21)𝜇  .
𝑛 

The second parameter is the standard deviation (𝜎  or 𝜎 ), which measures of the 

dispersion about the mean of the data representing the random variable [9]. For a 

population, it can be calculated as follows: 

𝑋
𝑁

 𝜇  
(22)𝜎

∑ 
. 

For a sample (from a larger population), the standard deviation can be calculated 

as follows: 

𝜎  
𝑋  𝜇

. (23) 
∑

𝑛  1  

Lastly, the coefficient of variation (COV or Vx) is the third statistical value 

required for the LRFD calibration. Nonetheless, the COV is not actually considered a 

third statistical parameter because it is just the standard deviation normalized by the 

mean. Therefore, other calibration documents just state the mean and COV or the mean 

and the standard deviation as initial calibration values. The COV is unitless and can be 

calculated as follows: 

𝜇
. (24)𝐶𝑂𝑉  𝑉   

𝜎  
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Sometimes the term variance is used, however, both terms are different. The 

actual variance is a unit dependent value equals to the square of the standard deviation 

and it is not specifically used in this study for calibration purposes. 

6.2.2 Data Cases: Filtering data. 

In order to assess the quality of the provided data, it can be important to 

statistically analyze the data in order to filter the extreme points or outliers if possible. An 

outlier is a data point that lies outside of the overall pattern in a distribution. On one 

hand, it is known that these outliers can significantly increase the COV values. Therefore, 

filtering the data from outliers would produce higher calibrated resistance factors. On the 

other hand, from the purely statistical perspective, the consideration of a value as an 

“outlier” just implicates a deeper analysis and research about the reasons why the value is 

further from the mean. Consequently, the judgment of the researcher shall define whether 

to include the outliers, according to the reasons found in the investigation.  

As mentioned by Allen et al [9], typical reasons to exclude an outlier include: 

 The data obtained near the structure boundary are not specifically 

accounted for in the design model being used (for example, data obtained 

near the top or bottom of a wall) 

 A different criterion is used to establish the value of a given point or set of 

points (e.g. a different failure criterion considered.) 

 A different measurement technique is used. 

 Data from a source may be suspect. 

 Data that are affected by regional factors (for instance, regional geology 

effects on soil or rock properties) may alter the values. 

 Other issues that would cause the data within a given data set not to be 

completely random in nature. 

The data provided by ALDOT does not present actual proof to be subjected to 

outlier removal according to guide provided by Allen et al. [9]. Nevertheless, this study 
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still considers the data cases in order to evaluate their effect on the calibrated resistance 

factors. The most popular methods to assess the data and identify outliers for driven piles 

are based on two criteria. The first criterion consists of using boxplots, which consider 

the boundaries at one and a half Interquartile (IQR) range from the first and third quartile 

for the bottom and upper portion, respectively. The boxplot method is used in this study 

because it has extended data applicability since It does not make distributional 

assumptions and does not depend on the mean or standard deviation. The boxplot can be 

adequately applied to symmetric or non-symmetric and mount-shaped or non-mount 

shaped data distribution [36]. Therefore, it can be adequately used for normal or 

lognormal data. The second criterion consist of establishing the boundaries at two 

standard deviations distance from the mean for the bottom and upper portion equally.  As 

mentioned by the Songwon [36], the two standard deviations method to identify outliers 

may not be adequate for skewed data such as lognormal data because it uses non-robust 

measures, such as the mean and standard deviation, which are highly affected by extreme 

values. Nonetheless, the two standard deviations method is still used in this study besides 

the boxplot method for two reasons. First, AASHTO specifications [37], which represents 

the most important federal specifications for driven piles, is mainly based on the NCHRP 

507 [6] , which considers the two standard deviation method even with skewed data 

(lognormal distributed). Second, the boxplot method might not be adequate for small 

sample size [36] and this study considers relatively small data sizes once the entire data 

sample is categorized. Therefore, this study considers three data cases. (1) Data case A, 

which does not exclude any outlier; (2) data case B, which excludes the outliers identified 

according to boxplot criterion; and (3) data case C, which excludes the outliers identified 

according to two standard deviations criterion. 

6.2.2.1  Data Case A. 

Data case A follows the statistical principle that the entire data is evaluated 

regardless of the presence of outliers. This case is usually followed when no significant 

reasons exist to exclude outliers. On one hand, this criterion can have an over-

conservatism nature. On the other hand, this criterion is consistent with data that have 

natural extreme values. The natural phenomenon can be represented by these extreme 
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values and no mistakes or different collection data methods has been made when 

collecting these extreme values. 

6.2.2.2 Data Case B. 

Data Case B uses boxplots as statistical tool to analyze the data to identify any 

outliers, and then decide to exclude them. The boxplots identify outliers using the IQR 

value, which is based on the location of quartiles on the data distribution. The lower 

portion of outliers is composed of values at a distance larger than 1.5IQR from the first 

quartile. The upper portion of outliers is composed by values at a distance larger than 

1.5IQR from the third quartile. Under this criterion, the outliers can be also graphically 

seen through boxplots. Figure 28 shows an example of boxplot and the IQR criterion. 

Figure 28: Different parts of a boxplot and the IQR criterion (Galarnyk, 
2018). 

In case no graphical tools are used, the following equations can be used once the quartiles 

are established: 

𝐼𝑄𝑅  𝑄3  𝑄1, (25) 

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡  𝑄1  1.5 ∗ 𝐼𝑄𝑅 , and  (26) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡  𝑄3  1.5 ∗ 𝐼𝑄𝑅 , (27) 
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where IQR is the Interquartile Range, Q1 is the first quartile, and Q3 is the third quartile. 

The values that are not within the lower limit and the upper limit are considered outliers 

and shall be investigated. 

6.2.2.3 Data Case C 

Data Case C follows the statistical principle to analyze the data to identify any 

outliers using the two standard deviations criteria, and then deciding to exclude them. 

The two-standard deviations criterion is used in the NCHRP 507 [6]. It is based on 

considering the points from the data set located at a larger distance than two standard 

deviations from the mean in a normal distribution as outliers. In other words, the 

following equations can be used:

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡  𝑀𝑒𝑎𝑛  2 ∗ 𝜎  and (28) 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡  𝑀𝑒𝑎𝑛  2 ∗ 𝜎 , (29) 

where 𝜎 is the standard deviation of the evaluated data sample. The values that are not 

within the lower limit and the upper limit are considered outliers and shall be 

investigated. 

6.2.3 Type of distribution for random variables. 

As stated before, random variables are the basis of the LRFD calibration. Any 

random variable is defined by its probability density function (pdf) and cumulative 

density function (cdf) [36]. A probability density function is essentially the representation 

of a continuous random variable. While several continuous variables exist, the main 

difference between them is the probability distribution [7]. Therefore, identifying the type 

of distribution for the random variable is vital for calibration purposes. Nowak and 

Collins [36] states that the most important type of random variable distributions used in 

structural reliability are the following: uniform, normal, lognormal, gamma, extreme type 

I, extreme type II, extreme type III, and Poisson. Nevertheless, Paikowsky et al [6] says 

that the resistance random variable can be taken as a normal or lognormal variable. 

AASHTO LRFD specifications [38] states that the load and resistance pdfs shall follow a 
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lognormal distribution. Moreover, Scott and Salgado [39] contend that loads and 

resistance variables found in geotechnical engineering must be represented by a 

lognormal distribution even if the variables do not follow a lognormal distribution. Scott 

and Salgado [38] justify this idea based on the two facts. The first one relies on the fact 

that load and resistance variables are always positive, which produces a lower limit but 

not an upper limit. This upper limit is usually unknown and is true usually for transient 

loads (live loads, wind loads, and earthquake loads). These transient loads are better 

represented by extreme type I or II distributions; however, these distributions require 

more information than the first and second moment (mean and variance), which is not 

typically available in the geotechnical field. Thus, these distributions generally do not 

represent the least biased distribution for loads. The second one relies on the fact that 

lognormal distribution represent transient loads better since it is completely defined by 

the first and second moment. Normal and lognormal distributions as well as the pdf and 

cdf concept are explained in the next section. 

6.2.3.1 Probability density functions (pdf) and cumulative distribution function (cdf)  

Allen et al [9] contends that probability density functions (pdfs) and cumulative 

distribution functions (cdfs) are necessary throughout the calibration procedure to 

statistically characterize the random variables used.  Basically, the pdf represents the 

probability of occurrence for certain ranges. Taking the integral of a pdf between two 

values yields the probability of the random variable being within those limits. 

Consequently, integrating a pdf from negative infinity to positive is always 1 [7]. For 

continuous random variables, the probability function is defined as the first derivative of 

the cdf [36]. 

The cumulative distribution function (cdf) represents the integration of a 

probability density function (pdf) from negative infinity up until the function point. The 

cdf symbolizes the probability that a random number is less than x. It will approach a 

value of 1 as x goes to positive infinity [7]. 

This study uses Excel to compute the pdf and cdf of the random variables. Some 

useful functions related to pdf and cdf when working with random variables are shared by 

Styler [7] and found in Table 15. 
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Table 15: Microsoft Excel Random Variables (Styler, 2006) 

Excel Function Description 

=NORMDIST(x, mx, σx, True/False) 

This function is for a normal random 
variable. If the parameter is True, it uses 
the cdf function. If False, it uses the pdf 
function. 

=NORMINV(probability, mx, σx) 

This is the inverse of the cdf function. It 
returns the location on the pdf at which 
an integration from negative infinity 
would yield the given probability. 

=NORMSDIST(x) 
This is the cdf for a normally distributed 
variable with a mean of 0 and a standard 
deviation of 1. 

=NORMSINV(x) 
This is the inverse of the cdf with a mean 
of 0 and standard deviation of 1. 

=LOGNORMALDIST(x, ξx, ζx) 
This is the cdf for a lognormal 
distribution with the given lognormal 
mean and standard deviation. 

=LOGINV(probability, ξx, ζx) This is the inverse of the lognormal cdf. 

6.2.3.2 Normal probability distribution 

The normal or Gaussian probability distribution for random variables is the most 

common in the structural reliability field [36]. The pdf for a normal random variable X is: 

1 

2
1 𝑥 𝜇

𝜎  

(30)𝑓 𝑥   
𝜎 √2𝜋 

exp   , 

 

 

 
(31)𝑓 𝑥   

√  
exp  

 

 
, 

where 𝑓 𝑥  is the pdf of the normal variable X. The cdf of the same normal random 

variable X is: 

𝐹 𝑥  𝐹  𝐹 𝑧 , (32)
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where 𝐹 𝑥  is the cdf of the normal variable X, and 𝐹 𝑧  is the cdf of the standard 

normal variable Z. Figure 29 and 30 show the general shape of both the pdf and cdf of a 

normal random variable. 

Figure 29: Example of pdf of a normal random variable (Nowak and Collins, 
2013). 

Figure 30: Example of cdf of a normal random variable (Nowak and Collins, 
2013). 

In case of standard normal variables, the pdf can be computed as follows: 

72 



   
 

 

 

 

 

 

 

    

 

 

 

 

 

  

 

  

 

 

(33)ф 𝑧   
√

1

2𝜋 
exp  

1
2 

𝑧  𝑓 𝑧 , 

and the cdf of standard normal variable is denoted by Ф(z). 

Furthermore, Nowak and Collins [36] state that the normal random variable 

distribution has the following properties: 

1. The pdf 𝑓 𝑥  is symmetrical about the mean. 

𝑓 𝜇  𝑥   𝑓 𝜇  𝑥  (34) 

2. The sum of 𝐹 𝜇  𝑥  and 𝐹 𝜇  𝑥  is equal to 1. 

𝐹 𝜇  𝑥  𝐹 𝜇  𝑥  1  (35) 

3. Due to it symmetry property, the cdf of the standard normal variable satisfies 

the following equation: 

Ф 𝑧  1   Ф 𝑧  (36) 

6.2.3.3 Lognormal probability distribution 

The lognormal probability distribution for random variables is also one of the 

most important within the structural field. Also, the lognormal probability distribution for 

random variables is one of the distributions considered in NCHRP 507 [6] for calibrating 

LRFD resistance factor for piles. Nowak and Collins [36] say that the random normal 

variable X has a lognormal distribution if 𝑌  ln 𝑥  is normally distributed. A lognormal 

random variable is usually characterized for being composed of only positive values. (x > 

0). The lognormal basic parameter such us the mean and standard deviation can be 

calculated as follows [36]:

𝜎  ln 𝐶𝑂𝑉   1  and (37) 

(38).𝜇;  ln 𝜇   
1
2 

𝜎  

The pdf and cdf can be calculated using distributions φ(z) and Ф(z), respectively, 

for the standard normal variable Z as follows: 
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𝐹 𝑥  𝑃 𝑋 𝑥  𝑃 𝑙𝑛 𝑋 𝑙𝑛  𝑥  𝑃 𝑌  𝑦  𝐹 𝑦 . (39) 

The pdf can be calculated as follows:

1 
ф

ln 𝑥  𝜇  𝑓 𝑥   , (40)
𝑥𝜎  𝜎  

where y = ln(x), μy = μln-x= mean value of ln(x), and σy=σln-x = standard deviation of 

ln(x). Figure 31 shows an example of pdf for a lognormal random variable. Since y is 

normally distributed, the cdf can be calculated as follows: 

𝐹 𝑥  𝐹 𝑦  Ф  
𝑦  𝜇

𝜎  
. (41) 

Figure 31: Example of pdf of a lognormal random variable (Nowak and 
Collins, 2013). 

6.2.4 Target Reliability Index. 

AbdelSalam et al. [22] declares that, for LRFD specifications, the target reliability 

index (βT) is defined as the measure of safety associated with a probability of failure (Pf). 

In other words, the reliability index determines the magnitude of the load and resistance 
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factors because it measures the probability of failure (Pf). In this way, the probability of 

failure represents the probability for the condition at which the resistance multiplied by 

the resistance factors will be less than the load multiplied by the load factors [6]. 

Rosenbleuth et al. [40] suggests an equation that relates the probability of failure (Pf) and 

the reliability index (β) with reasonable proximity, seen as, 

𝑃   460𝑒 . . (42) 

6.2.5 Load factors. 

An estimate of the load factor should be set before starting the resistance factor 

calibration. Since loads are generally better known than resistances, the load effect 

usually has a smaller variability than the resistance. Many load combinations can be 

developed according to the reliability index β or probability of failure desired Pf. In 

LRFD specifications, the load factors should be larger than 1.0 and the resistance factors 

should be less than 1.0. Nevertheless, in some cases, this might not be possible due to the 

grade of conservatism of the prediction methods considered for load and resistance [9].  

It is possible to estimate the load factor using the following equation,  

𝛾  𝜆 1  𝑛 𝐶𝑂𝑉 , (43) 

where 𝛾  is the load factor, 𝜆  is the bias factor for the load, 𝐶𝑂𝑉  is the coefficient of 

variation of the ratio of measured to predict load, and 𝑛  is a constant representing the 

number of standard deviations from the mean needed to obtain the desired probability if 

exceedance. The Ontario Highway Bridge Design Code and AASHTO LRFD Bridge 

Design specifications [38] suggest using 𝑛  2. 

Moreover, the dead-to-live ratio considered for load combinations on bridges depends on 

the deck lengths and it has a small influence on the calculated resistance factors. 

Paikowsky et al. [6] suggest using a value between 2 and 2.5. 
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6.3 FOSM calibration concept and procedure 

The First Order Second Moment (FOSM) is a closed form solution and a 

probabilistic reliability method [41]. It is called FOSM because it is a first-order 

expansion about the mean value and a linear approximation of the second corrected 

moment (variance) [42]. This method was developed largely by Cornell [43] and Lind 

[44]. FOSM belongs to the level II of probabilistic-based analysis. FOSM is one of the 

two methods used by AASHTO specifications [38] for calibrating LRFD resistance 

factors. This method involves the consideration of statistical characteristics such as the 

mean, standard deviation, and coefficient of variation (COV) to describe the probability 

functions of the load and resistance variables. FOSM assumes that the load and resistance 

random variables are modeled following a lognormal distribution [7]. The procedure is 

listed below: 

Step 1: Obtain the bias mean, standard deviation, and COV of the load and 

resistance values independently using equations 21 to 24. Moreover, the load 

factors for the dead load and live loads shall be known. 

Step 2: Establish the target reliability index based on the probability of failure 

desired. Both concepts are explained in section 4.2.4. 

Step 3: According to Cornell [42] and Lind [43], the following equation can be 

used to compute the resistance factor: 

 ƴ
1 𝐶𝑂𝑉  𝐶𝑂𝑉

𝜆
ƴ

𝑄
𝑄  

1 𝐶𝑂𝑉   
(44)

ф  ,
𝜆

𝑄
𝑄  𝜆  exp β ln 1  𝐶𝑂𝑉 1  𝐶𝑂𝑉  

  𝐶𝑂𝑉  

where фR is the calibrated resistance factor, λR is the mean resistance bias factor, 

λQD is the dead load bias factor, λQL is the live load bias factor, βT is the target 

reliability index, COVQD is the coefficient of variation for dead load, COVQL is the 

coefficient of variation for live load, and COVR is the coefficient of variation for 

resistance. 
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6.4 FORM calibration concept and procedure 

FORM means First Order Reliability Method (FORM) because it is based in the 

first-order terms in the Taylor series expansion, where only means and variances are 

required [36]. NCHRP 507 [6] states that the structural design codes used FORM 

calibration, hence Geotechnical resistance factors shall follow the same methodology in 

order to be consistent when using the load factors. In addition, the same report [6] 

mentions that FORM resistance factors are about 10% higher than FOSM resistance 

factors. The procedure listed in this report follows the actual FORM procedure (not 

Hasofer-Lind method), which is based on Styler thesis [7]; and Phoon, Kulhawy, and 

Grigoriu’s paper [45]. 

Step 1: Define the failure equation 

The failure equation is adapted from the limit state equation and consists on the 

relation used to represent a specific limit state of a system of variables. Failure 

takes place when the failure equation is less than or equal to zero. The failure 

equation is usually the difference between the resistance and the load random 

variables: 

𝐺 𝑅 𝑄,  (45) 

where R is the resistance random variable and Q is the load random variable. 

Thus, When G is less than or equal to zero, failure of the system occurs. It should 

be noted that no loading factors are used in this equation. These R and Q random 

variables are function of the bias factor variables: 

𝑅  𝑟  ∗ 𝜆  and (46) 

𝑄  𝑞  ∗ 𝜆 𝑞 𝜆 , (47) 

where 𝑟  is the nominal (predicted) resistance, 𝑞  is the dead load value, and 𝑞  is 

the live load value. 

Step 2: Choose random variable distributions 
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The distributions of the random variables will typically be considered as normal 

or lognormal. The case of calibration of driven piles, Paikowsky et al [6] suggests 

taking bias factors as lognormal random variables. However, Styler [7] suggest 

performing a chi-squared test to justify a chosen random variable. 

Step 3: Choose LRFD factors to analyze 

The probability of failure is based on the load factors, the specific reliability 

index, and the dead to live load ratio. Usually, load factors are specified by 

organization. The case of driven pile reliability indices and dead to live ratios, the 

values are discussed and stated by Paikowsky et al [6]. When using the FORM 

calibration, a resistance factor is computed for its corresponding reliability index. 

Therefore, multiple resistance factors will be required to be computed to match 

the target reliability index.  

Styler [7] contends that the design space is separated from the failure space due to 

the load and resistance factors. A design point is based on the LRFD limit 

equation; however, the randomness of the bias factors results in unknown exact 

resistance and load values. FORM method determines the probability that the 

actual resistance and load occurs within the failure space for a specific design that 

takes place on the boundary of the acceptable design space. The slope of the 

design space can be computed from the dead to live load ratio and the load and 

resistance factors as follows: 

ф ∗ 𝑟  ƴ ∗ 𝑞 ƴ ∗ 𝑞 ,  (48) 

𝑞
𝑞  

𝜂  ,  (49) 

ф ∗ 𝑟  ƴ ∗ 𝜂 ∗ 𝑞 ƴ ∗ 𝑞 , (50) 

ф  ∗ 𝑟  𝑞 𝜂 ∗ ƴ  ∗ ƴ , (51) 

ф  ∗ 𝑟
𝑞   (52)

𝜂 ∗ ƴ ƴ
 , 

𝜂 ∗ ф  ∗ 𝑟
𝑞 𝜂 ∗ 𝑞

𝜂 ∗ ƴ ƴ  
, and  (53) 
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𝜂 ∗ ф ∗ 𝑟  ф ∗ 𝑟  

𝑆𝑙𝑜𝑝𝑒  
𝑞
𝑟 

𝑞 𝑞  𝜂 ∗ ƴ ∗ ƴ 𝜂 ∗ ƴ ƴ  

𝜂 ∗ ƴ
ф

ƴ
𝜂 1 , 

(54)
𝑟  𝑟  

where γQD is the dead load factor, γQL is the live load factor, η is the dead-to-live 

load ratio. 

Step 4: Calculate the initial design point 

The FORM calibration starts at this step. Using the given nominal resistance and 

dead to live load ratio, the dead and live loads can be computed as follows: 

ф ∗ 𝑟  ƴ ∗ 𝑞 ƴ ∗ 𝑞 ,  (55) 

 
η , (56) 

𝑞  𝜂 ∗ 𝑞  , (57) 

ф  ∗ 𝑟  𝑞 ƴ 𝜂  ƴ ,  and  (58) 

ф ∗𝑞   (59)
ƴ ∗ ƴ

, 

As mentioned before, the resistance and load random variables are function of the 

lognormal bias random variables. 

𝑅 𝑟 ∗ 𝜆  and (60) 

𝑄  𝑞  ∗ 𝜆  𝑞  ∗ 𝜆  . (61) 

Likewise, the expected values for the R and Q random variables are calculated 

using the following equations:

𝐸 𝑅  𝑟  ∗ 𝜆  and (62) 

𝐸 𝑄  𝑞  ∗ 𝜆 𝑞  ∗ 𝜆  (63) 

where 𝐸 𝑅  is the expected value of the resistance random variable, and 𝐸 𝑄  is 

the expected value of the load random variable. Then, the normal standard 

deviation for the resistance and load can be computed as follows: 

𝜎  𝑟 𝜎  and (64) 

𝜎   𝑞 𝜎  
 (65) 𝑞 𝜎  
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where 𝜎  is the standard deviation of the resistance R, 𝜎  is the standard deviation 

of the load Q, 𝜎  is the standard deviation of the resistance dataset, 𝜎  the 

standard deviation of the dead load dataset, and 𝜎  the standard deviation of the 

live load dataset. 

Step 5: Transform into an equivalent normal distribution 

In this step, it is necessary to transform an equivalent normal distribution using 

the design point (r, q). For the first iteration, the design point is equal to the 

expected resistance and load random values (E[R], E[Q]). The mean and standard 

deviation can be computed with the following equations: 

𝜎   
ф Ф 𝐹 𝑟

𝑓 𝑟  
, (66) 

𝑅  𝑟   Ф 𝐹 𝑟 𝜎  , (67) 

𝜎   
ф Ф  𝐹 𝑞  

, and  
𝑓 𝑞  

(68) 

𝑄  𝑞   Ф 𝐹 𝑞 𝜎  , (69) 

Where 𝐸 𝑅  is the expected equivalent normal random variable for the 

resistance, and 𝐸 𝑄  is the expected equivalent normal random variable for the 

load. The function Ф  represents the inverse of the standard cumulative 

distribution function. FR(r) represents the cumulative function for random variable 

R. It should be noted that the pdf depends of the chosen distribution. 

Styler [7] says that when FORM is performed, the lognormal random variable is 

positively biased, and the mean of the resulting normal random is lower.  

Step 6: Transform original random variables to standard normal random 

variables 

To perform this transformation, the following equations are required: 

𝑅   
𝑅  𝐸 𝑅

 and (70)
𝜎  

𝑄   
𝑄  𝐸 𝑄

 , (71)
𝜎  
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where R and Q are the original lognormal random variables, and RSN and QSN are 

the standard normal random variables for resistance and load, respectively. In the 

same way, the design point shall be transformed from real space to standard 

normal random variable space. It should be noted that in the first iteration, the 

design point in real space is the most probable values of the resistance and load 

lognormal random variables. In other words, the design point is the mode of the 

lognormal distribution. Thus, the standard normal space design point shall be 

calculated from the real space design point using the following equations: 

 𝐸 𝑅  (72)𝑟  
𝐸 𝑅

 and
𝜎

 𝐸 𝑄  
(73)𝑞

𝐸 𝑄
 .

𝜎  

Step 7: Rewrite the failure in terms of the standard normal random variables 

It is important to transform the failure equation to standard normal random 

variables using the following equations: 

𝐺 𝑅 𝑄 and  (74) 

𝐺   𝑅 𝜎  𝐸 𝑅  𝑄 𝜎  𝐸 𝑄  . (75) 

Step 8: Compute a new trial design point 

Styler [7] states that a new trial design point (r*, q*) shall be computed using the 

following equations: 

𝑟∗  
𝐸 𝑅  𝐸 𝑄 𝜎  and (76)

𝜎  𝜎  

𝑞∗  
𝐸 𝑅  𝐸 𝑄 𝜎  . (77)

𝜎  𝜎  

This new design point represents the closest distance from the origin to this failure 

line. It should be noted that the failure line barely varies after each iteration. 

Step 9: Calculate the reliability index. 

The reliability index is the closest distance from the origin to the failure line and 

can be calculated as follow: 

β  𝑟∗  𝑞∗ . (78) 
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Step 10: Repetitive iteration (FORM iteration) 

The new design point shall be transformed back to the real space using the 

following equations:

𝑟  𝑟∗𝜎  𝐸 𝑅  , and (79) 

𝑞  𝑞∗𝜎  𝐸 𝑄  (80) 

Then, recalculate the equivalent normal distribution using this new design point 

(r, q). This procedure must be repeated until the reliability index β remains stable 

as shown in the Figure 32. 
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Figure 32: Iteration procedure flowchart from Step 9. 

Finally, the resistance factor established in the step 3 shall be altered until the 

reliability index β matches the target reliability index βT. The resistance factor that 

satisfies the target reliability index is the final FORM calibrated resistance factor. 
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6.5 Monte Carlo simulation concept and procedure 

Nowak and Collins [36] mention that the basic idea of the Monte Carlo 

Simulation (MCS) is based on numerically simulating some phenomenon and then 

observing the number of times some event of interest occurs. Moreover, Allen et al [9] 

states that Monte Carlo Simulation is simply a tool to curve fit and extrapolate available 

measured statistical data; in this case, load and resistance data, or more generally, for 

any random variable that affects the outcome of a limit state calculation. According to 

Nowak and Collins [36], the Monte Carlo Simulation is generally applied to the 

following cases: 

 It is used when closed-form solutions are not possible or extremely 

difficult. 

 It is used when closed-form solutions require too many simplifying 

assumptions. 

 It is used to revise the results provided from other solution techniques. 

The Monte Carlo procedure stated in this report is extracted from Allen et al. [9] 

and Reddy and Stuedlein [45] in order to present a detailed and understandable 

procedure. MCS calibration is performed to revise the resistance and efficiency factors 

from FOSM and FORM in this study. The procedure is listed below. 

Step 1: It is first important to establish a limit state function. According to 

AASHTO [47], for geotechnical and structural design, the basic limit state 

function is expressed as: 

ф 𝑅   ƴ 𝑄  . (81)

 

This equation represents failure when the applied loads are equal to the available 

resistance. However, Reddy and Stuedlein [46] contend that for calibration 

purposes, the limit state equation  shall be expressed in terms of distribution in the 

margin of safety (gi), and the load and resistance biases as [48]: 
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ƴ  (82)𝑔 𝜆 ,  𝜑  
𝜆 , 0 ,  

where ƴavg is a weighted load factor representing multiple load sources and λQ is 

the bias of the applied load. Stuedlein et al. [49] says that in case of multiple load 

sources (such as bridges and other superstructures), λQ can be computed as 

follows: 

𝜆   
𝜆 𝜂  𝜆

𝜆 ,  , (83)
𝜂 1  

where λQD is the bias for dead loads, λQL is the bias for live loads, and η is the ratio 

of the dead to live load. Stuedlein et al. [49] adds that in cases of having multiple 

loads, a weighted load factor may be used: 

Ƴ   
𝜆 ƴ 𝜂  𝜆 ƴ  , (84)

𝜆 𝜂  𝜆  

where ƴQ,D is the dead load factor, and ƴQ,L is the live load factor. 

Step 2: Establish the reliability-target value βT, which is a function of the 

probability of failure pf. Paikowsky et al. [6] indicates that redundant piles (groups 

of 5 piles or more) require a βT of 2.33. On other hand, non-redundant piles 

require a βT of 3.0. 

Step 3: Establish the number of simulations (N) required prior to performing the 

simulation. This can be calculated according to the true probability of failure Pf 

true established, which corresponds to the target reliability index, and the 

coefficient of variation of the estimate probability Vp as follows: 

𝑁  
1 𝑃   

𝑉 ∗ 𝑃  
 . (85) 

Step 4: The data is extrapolated (simulation) following the distributions of the two 

variables Q and R. This simulation is performed considering three statistical 

parameters that characterize the data: mean, standard deviation, and cumulative 

distribution function (cdf). It should be noted that the closed-form methods use 

just the mean and the standard deviation. In case of load and resistance values, 

they may be considered as normal or lognormal random variables. 
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In case Q has a normal distribution, randomly determined data shall be generated 

in accordance to the specified distribution characterized by a mean, a standard 

deviation, and a coefficient of variation using a random number generator as 

shown below [36]:

𝑄  𝜆 1  𝐶𝑂𝑉 𝑧 ,  (86) 

where Qi is a randomly generated value of Q using a specified set of statistical 

parameters, zi is the inverse normal function of 𝑢  and is equal to Ф 𝑢 , 𝑢  

is a random number between 0 and 1 representing a probability of occurrence. 

In case Q has a lognormal distribution, randomly determined data shall be 

generated in accordance to the specified distribution characterized by lognormal 

mean, a lognormal standard deviation, and a coefficient of variation using a 

random number generator as shown below [36]: 

𝑄 𝑒𝑥𝑝 𝜇  𝜎 𝑧 and   (87) 

where: 

𝜇  𝐿𝑁 𝜆   0.5𝜎  , and  (88) 

𝜎   𝐿𝑁 𝐶𝑂𝑉  1
.  

. (89) 

Similarly, the resistance values R have a lognormal distribution. Thus, randomly 

determined data shall be generated in accordance to the specified distribution 

characterized by a mean, a standard deviation, and a coefficient of variation using 

a random number generator as shown below: 

𝑅  exp 𝜇  𝜎 𝑧 ,  (90) 

where: 

𝜇  𝐿𝑁 𝜆  0.5𝜎  , (91) 

𝜎  𝐿𝑁 𝐶𝑂𝑉  1 . , (92) 

and where Ri is a randomly generated value of R using a specified set of statistical 

parameters, zi is the inverse normal function of uib and is equal to Ф 𝑢 , uib is 

a random number between 0 and 1 representing a probability of occurrence. 
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It is important to mention that the random numbers uia and uib shall be generated 

independently assuming that Q and R are independent variables [9]. 

Step 5: Once the simulated data for each distribution has been generated, set a 

trial resistance factor and the limit state function g is computed for each couple of 

Q and R values. 

Step 6: Determine the probability of failure of the simulation performed using the 

following equation: 

𝑃  𝑁
𝑛

 , (93) 

where n is the number of times that a particular criterion is achieved. In this case n 

is the number of times when g is lower than zero (which indicates failure). N is 

the number of simulations performed. 

Step 7: Calculate the reliability index using the probability of failure computed in 

the previous step. It can be calculated in Microsoft Excel using the function 

NORMSINV as shown: 

β  𝑁𝑂𝑅𝑀𝑆𝐼𝑁𝑉 𝑃 . (94) 

Step 8: Set different values for the resistance factor until β and βT converge. The 

final resistance factor has been calculated. 

6.6 Reliability Based Efficiency factor. 

The values of the calibrated resistance factor alone do not represent an objective 

measurement of the design method efficiency. Such efficiency can be better measured if 

the efficiency factor is considered [31], which can be calculated as follows: 

𝜆  
, (95)𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑓𝑎𝑐𝑡𝑜𝑟  

ф  

where фR is the calibrated resistance factor by each method, and λR is the mean bias 

resistance. According to NCHRP 507 [6] and Figure 33, the efficiency factor is 

systematically higher for methods which predict more accurately regardless of the bias. 

In this way, a design or prediction method can be more efficient only if its variability 
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(COV) is reduced. The ideal method would have a bias factor of 1, a COV of 0, hence a 

resistance factor of 0.80. It is suggested to choose the design methods according to their 

COV [6]. 

Figure 33: Illustration of the efficiency factor as a measure of the 
effectiveness of a design method when using resistance factors (Paikowsly et al, 

2004) 

Jabo [50] adds that computing a higher resistance factor does not necessarily 

imply an efficient pile design method. While reducing the standard deviation (σ) value 

would always improve the precision of the prediction method, increasing the λR could 

make prediction overestimate the pile capacity. Therefore, the economy factor of the 

structure would be affected. In addition, Jabo [49] states that the design equation for an 

axial pile can be rewritten as follows:

𝑃  ф 𝑅 , (96) 

where Pdesign is the design pile capacity, фR is the calibrated resistance factor, and Rn is the 

nominal resistance of the pile. If the resistance bias factor λR is defined as the ratio of 
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measured resistance (Rm) to predicted nominal resistance (Rn), the equation 95 can be 

modified as follows: 

(97)𝑃   
ф
𝜆

 𝑅 . 

Using this relationship, Jabo [49] demonstrates that only a portion of the measured 

capacity is allowed for design to meet the required reliability level. Consequently, the 

efficiency factor can efficiently quantify the performance of the pile design method. To 

put it briefly, a higher efficiency factor implies a better pile design method [51]. 

6.7 Summary of Calibration methodology. 

This chapter illustrates the conceptual background behind the probabilistic 

methods applied to a LRFD calibration. The three probabilistic-based methods used in 

this study, which are FOSM, FORM, and MCS; involve the application of the 

information described in this chapter. In other word, random variables, bias values, target 

reliability indices, and pre-calibration considerations are defined prior to performing the 

LRFD calibration. The next chapter shows in actual example of the application of these 

concepts into a LRFD calibration. 
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CHAPTER VII - LRFD RESISTANCE FACTORS CALIBRATION 

This chapters illustrates the way to conduct an actual calibration of LRFD 

resistance factors using FOSM, FORM, and MCS methodology. As explained in the next 

chapter, the random variables are defined as loads and resistance for this study.  The bias 

values are calculated for each pile. Then, the mean, standard deviation, and coefficient of 

variation are calculated for each data set considering the data cases. While the loads have 

their statistical previously established according to NCHRP 507, the resistance statistical 

characteristics are calculated in this study. Moreover, the load factors are also pre-

established according to NCHRP 507 as well as the target reliability index. These are the 

statistical characterization and pre-calibration considerations required to perform the 

LRFD calibration. Then, the actual LRFD calibration is performed using FOSM, FORM, 

and MCS methodology. 

7.1 Pre-calibration considerations. 

The LRFD calibration of resistance factors can performed once specific reliability 

levels and load characteristics have been established. Therefore, this section describes the 

target reliability index used in this study as well as the statistical parameter that represent 

the load variables. 

7.1.1 Target Reliability Index. 

The target reliability index represents the probability of failure desired. Therefore, 

it determines magnitude of the load and resistance factors for a LRFD calibration. In this 

project, the reliability index and probability of failure are obtained from the Federal 

Highway Administration [21], Paikowsky et al. [6], and Luna [3] as shown in Table 16. 
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Table 16: Reliability index values based on pile groups 

Pile Group type β Pf 

Redundant (5 or more piles per pile cap) 2.33 1.00% 
Intermediate point between redundant and non-redundant 
piles 

2.50 0.99% 

Non-redundant (4 or fewer piles per pile cap) 3.00 0.10 % 

7.1.2 Dead and Live loads characterization. 

Prior to performing the calibration of resistance factors, the statistical 

characteristics of the dead and lives loads shall be known as well as the load factors. In 

this report, the values used by AASHTO [38] and suggested by Paikowsky [6] are used. 

These values are shown in the Table 17. 

Table 17: Load statistical values used. 

Dead Load Live Load 

Parameter 
Recommended 
value 

Parameter 
Recommended 
value 

λQD 1.050 λQL 1.150 

COVQD 0.100 COVQL 0.200 
σλD 0.105 σλL 1.230 

γQD 1.250 γQL 1.750 

In addition, Paikowsky et al. [6] indicates that a dead-to-live ratio of 2 or 2.5 is 

reasonable due to the small influence of this factor on the calibrated resistance factors. 

Therefore, in this report, the value for QD/QL is taken as 2 and can be also represented by 

the symbol 𝜂. 

91 



   
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.2 Statistical data characterization for WBUZPILE and DRIVEN. 

This section shows the statistical characterization for the resistance random 

variable since it is required for LRFD calibration of resistance factors. The resistance data 

set is composed by the resistance bias values, which are basically the ratio of the 

measured resistance and the predicted resistance. In this section, the prediction methods 

consist of the design programs WBUZPILE and DRIVEN. The statistical characterization 

includes the type of probability distribution as well as the mean, standard deviation, and 

coefficient of variation for each data case. 

7.2.1 Resistance random variable and bias. 

As mentioned before, the random variables in this study are defined as loads and 

resistance. While the loads were statistically defined in the section 7.1.2, the resistance 

statistical characteristics shall be calculated using the data provided by ALDOT. Within 

the structural reliability field, the value used is the bias, which is the ratio of the measured 

resistance and the predicted resistance. In this way, the bias shall be calculated for each 

pile and each prediction method (WBUZPILE and DRIVEN) independently, as shown in 

Table 18. 
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Table 18: Resistance bias values for WBUZPILE and DRIVEN. 

Pile Type λR DRIVEN λR WBUZPILE 

210  HP  2.294  0.965 

3002 HP  0.833  1.110 

3003 HP  1.862  0.991 

4301 HP  0.817  0.369 

4601 HP  1.231  0.753 

6503 HP  0.316  0.518 

Celeste Rd Bent 2  HP  0.346  0.379 

Moores Mill Rd HP  5.123  1.239 

5702 HP  0.514  0.341 

6502 HP  1.057  1.527 

Celeste RD A1  HP  0.579  0.611 

SR 41  HP  0.209  0.220 

212  HP  0.599  0.521 

1901 HP  2.157  1.486 

5502 HP  2.187  1.304 

6504 HP  0.602  0.641 

213  HP  1.132  2.692 

214  HP  1.900  2.038 

301  HP  0.795  1.575 

1101 (pre‐splice)  HP  1.314  2.631 

5501 HP  0.600  0.791 

5703 HP  0.573  0.667 

5704 HP  1.089  1.115 

5705 HP  0.788  0.859 

5801 HP  1.493  1.851 

6303 HP  0.597  1.172 

6501 HP  1.033  1.343 

6506 HP  1.292  1.540 

CBD Bridge A1  HP  2.383  1.593 

CBD 7A Bent 2  HP  1.107  2.278 

3001 HP  0.645  0.659 

4001 HP  0.993  0.931 

4801 HP  1.674  2.634 

6301 HP  1.191  0.802 

6302 HP  1.383  1.125 

6304 HP  1.581  1.028 
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Table 18, cont. 

Pile Type λR DRIVEN λR WBUZPILE 

201  Concrete 0.687  0.627 

202  Concrete 1.050  0.850 

206  Concrete 0.109  0.438 

207  Concrete 0.849  0.598 

211  Concrete 0.372  0.244 

501  Concrete 0.481  0.710 

502  Concrete 0.452  0.631 

503  Concrete 0.762  0.710 

504  Concrete 0.311  0.232 

505  Concrete 0.545  0.423 

5103 Concrete 0.678  0.667 

204  Concrete 1.549  0.815 

205  Concrete 0.485  0.302 

506  Concrete 0.541  0.491 

203  Concrete 0.464  0.220 

208  Concrete 1.189  1.277 

209  Concrete 0.762  0.354 

Table 18 shows that the bias values for WBUZPILE range from 0.232 to 2.692 

while the bias values for DRIVEN range from 0.316 to 5.123. Some of these bias values 

might be excluded due to the evaluation of data cases performed in the next section. 

7.2.2 Data cases: Filtering data. 

Filtering data from outliers in order to assess the quality of the provided data can 

be important for a LRFD calibration project. When an outlier is found, it must be 

investigated prior to its removal. Removing outliers without investigation is considered as 

data fixing, hence it is unethical and frowned upon. After reviewing the data and 

documents provided by ALDOT, it was noticed that no pile data point from WBUZPILE 

or DRIVEN satisfies the requirements to be excluded as an outlier according to Allen et 

al. [9]. In other words, the definitive resistance factors shall be calibrated with the entire 
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dataset. Nevertheless, this section still evaluates the magnitude of the effect of the data 

cases on the calibrated resistance factors. The data cases consist basically of filtering data 

from outliers in order to assess the quality of the provided data. An outlier is a data point 

that lies outside of the overall pattern in a distribution. Once the outlier is identified, it is 

excluded from the data set for this particular study. As stated in the previous chapter, the 

data cases evaluated are three. (A) All data set, (B) dataset without outliers based on 

boxplots, and (C) dataset without outliers based on 𝑋 2𝑆𝐷 criterion. 

7.2.2.1 Data cases for all piles set. 

This section shows the quality assessment the data for corresponding for the entire 

set of piles. The all piles data set includes 100% of the resistance bias values. In other 

words, the data set includes the 36 steel H-Piles and the 17 concrete piles data as one 

single group. 

The data case B uses boxplots as graphical tool to identify outliers. Figure 34 box 

plot for WBUZPILE (all piles) and Figure 35 shows the boxplot for DRIVEN (all piles). 

These graphs mark outliers with an asterisk (*). 
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Figure 34: Boxplot of resistance bias values for WBUZPILE (All piles) 
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Figure 35: Boxplot of resistance bias values for DRIVEN (All piles) 

As shown in Figures 34 and 35, the WBUZPILE data shows 3 outliers and the 

DRIVEN data shows 1 outlier for data case B. 

The data case C uses the two standard deviations criterion to identify outliers. The 

outliers and excluded data points are 4 values for WBUZPILE data (all piles) and 1 value 

for DRIVEN data (all piles). 

7.2.2.2 Data cases for steel H-piles set. 

As stated before, filtering the data from outliers can be important to assess the 

quality of the provided data. This section illustrates the evaluation and exclusion of 

outliers for the steel H-Piles data set. The steel H-Piles dataset is composed by 36 driven 

steel H-Piles as a single group. 

The data case B uses boxplots as graphical tool to identify outliers. Figure 36 box 

plot for WBUZPILE (steel H-piles) and Figure 37 shows the boxplot for DRIVEN (steel 

H-Piles). These graphs mark outliers with an asterisk (*). 
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Figure 36: Boxplot of resistance bias values for WBUZPILE (Steel H-Piles) 
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Figure 37: Boxplot of resistance bias values for DRIVEN (Steel H-Piles). 
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As shown in Figures 36 and 37, the WBUZPILE data (steel H-piles) shows no 

outliers and the DRIVEN data (steel H-Piles) shows 1 outlier for data case B. 

The data case C uses the two standard deviations criterion to identify outliers. The 

outliers and excluded data points are 3 values for WBUZPILE data (steel H-piles) and 1 

value for DRIVEN data (steel H-piles). 

7.2.2.3 Data cases for concrete piles set. 

As stated before, filtering the data from outliers can be important to assess the 

quality of the provided data. This section illustrates the evaluation and exclusion of 

outliers for the concrete piles data set. The concrete dataset is composed by 17 driven 

concrete piles as a single group. 

The data case B uses boxplots as graphical tool to identify outliers. Figure 38 box 

plot for WBUZPILE (concrete piles) and Figure 39 shows the boxplot for DRIVEN 

(concrete piles). These graphs mark outliers with an asterisk (*). 
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Figure 38: Boxplot of resistance bias values for WBUZPILE (Concrete Piles) 
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Figure 39: Boxplot of resistance bias values for DRIVEN (Concrete Piles). 

As shown in Figures 38 and 39, the WBUZPILE data (concrete piles) shows no 

outliers and the DRIVEN data (concrete piles) shows 1 outlier for data case B. 

The data case C uses the two standard deviations criterion to identify outliers. The 

outliers and excluded data points are 1 value for WBUZPILE data (concrete piles) and 1 

value for DRIVEN data (concrete piles). 

7.2.3 Type of probability distribution. 

As previously stated, random variables are the basis of the LRFD calibration. Any 

random variable is defined by its probability density function (pdf) and cumulative 

density function (cdf) [35]. Moreover, the three reliability calibration methods utilized in 

this study require establishing the most accurate type of probability distribution.  
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While the most common type of distributions are uniform, normal, lognormal, 

gamma, extreme type I, extreme type II, extreme type III, and Poisson ; AASHTO LRFD 

specifications [38] and Scott and Salgado [39] suggest considering a lognormal 

distribution even if they are not lognormally distributed. Therefore, this study examines 

the data to determine if the data can be assumed as lognormal probability distributed with 

95% as confidence interval. 

This study considers the Anderson-Darling test and 95% Confidence Intervals 

(95% CI) performed the three data sets and three data cases to check the normality of 

each data group. The alternative hypothesis states that the data does not follow the 

specified distribution while the null hypothesis states that the data follows the specified 

distribution. The p-value represents how likely the studied data actually follows the 

corresponding distribution. Thus, if the p-value is very small, the alternative hypothesis is 

accepted, and the null is rejected. Table 19 shows the results of the normality tests. 

Table 19: Anderson-Darling test results for WBUZPILE and DRIVEN 

Design 
method 

Data set  Data Case  Data size 
Lognormal 

AD  p‐value 

WBUZPILE 

All piles 
Data Case A  53 0.197  0.884 
Data Case B  50 0.319  0.525 
Data Case C  49 0.391  0.367 

Steel H‐Piles 
Data Case A  36 0.213  0.841 
Data Case B  36 0.213  0.841 
Data Case C  33 0.358  0.433 

Concrete 
Piles 

Data Case A  17 0.358  0.410 
Data Case B  17 0.358  0.410 
Data Case C  16 0.544  0.136 

DRIVEN 

All piles 
Data Case A  53 0.238  0.771 
Data Case B  52 0.275  0.648 
Data Case C  52 0.275  0.648 

Steel H‐Piles 
Data Case A  36 0.255  0.708 
Data Case B  35 0.343  0.471 
Data Case C  35 0.343  0.471 

Concrete 
Piles 

Data Case A  17 0.431  0.271 
Data Case B  16 0.552  0.129 
Data Case C  16 0.552  0.129 
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As previously stated, the main variable to assess is the p-value since it represents 

how likely the studied data actually follows the corresponding distribution. In this way, 

the results illustrated in table 9 reveal that the probability of 95% CI (p-value) is greater 

than 0.05 for all data subsets. Consequently, the lognormal distribution is accepted for all 

data cases. 

7.2.4 Mean, standard deviation, and coefficient of variation. 

As stated before, filtering or not the data can produce a significant modification of 

the basic descriptive characteristics of the data. The mean, standard deviation, and COV 

are shown in Table 20 for all data cases. 

Table 20: Resistance statistical characteristics for WBUZPILE and DRIVEN. 

Statistical data summary for resistance R 

Design 
method 

Data set 
Statistical 
Parameter 

Data case A  Data case B Data case C 

WBUZPILE 

All data 

Mean (λR)  0.979 0.879  0.850

𝜎  0.633 0.493  0.455 

COVR 0.646 0.561  0.535 

Steel H‐Piles 

Mean (λR)  1.175 1.175  1.041

𝜎  0.662 0.662  0.505 

COVR 0.563 0.563  0.486 

Concrete Piles 

Mean (λR)  0.564 0.564  0.520

𝜎  0.274 0.274  0.210 

COVR 0.486 0.486  0.404 

DRIVEN 

All data 

Mean (λR)  1.049 0.970  0.970

𝜎  0.799 0.559  0.564 

COVR 0.762 0.582  0.582 

Steel H‐Piles 

Mean (λR)  1.230 1.119  1.119

𝜎  0.887 0.592  0.592 

COVR 0.721 0.529  0.529 

Concrete Piles 

Mean (λR)  0.664 0.609  0.609

𝜎  0.350 0.274  0.274 

COVR 0.527 0.450  0.450 
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As shown in Table 20, the effect of data cases is seen in different mean, standard 

deviation, and coefficient of variation values. The data case A shows the largest bias 

values as well as the standard deviation and coefficient of variation values. These results 

were expected since the excluded values are typically located in the upper limit within the 

structural reliability field. On the other hand, the data case C shows the lowest bias values 

as well as the standard deviation and coefficient of variation values. As mentioned 

before, the data shown in Table 20 represents the initial point to perform the actual LRFD 

calibration of resistance factors. 

7.3 Statistical data characterization for DLT. 

This section shows the statistical characterization for the resistance random 

variable since it is required for LRFD calibration of resistance factors. The resistance data 

set is composed by the resistance bias values, which are basically the ratio of the 

measured resistance and the predicted resistance. In this section, the prediction methods 

consist of the dynamic load testing (DLT) performed by PDA with iCAP as signal 

matching. The statistical characterization includes the type of probability distribution as 

well as the mean, standard deviation, and coefficient of variation for each data case. 

7.3.1 Resistance random variable and bias. 

As mentioned before, the bias is the primary factor considered in the structural 

reliability field. The case of LRFD calibration for DLT considers the resistance bias 

factor as ratio of the measured resistance (Davisson or SLT) and the control field test 

(DLT or EOID). In this way, the bias factor must be computed for each pile from the 

database as displayed in Table 21. 
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Table 21: Calculation of resistance bias values for DLT. 

N°  Pile  Pile Type  λR DLT 

1  205  Concrete  1.149 

2  501  Concrete  2.278 

3  503  Concrete  1.277 

4  6501  H‐Pile  1.219 

5  Celeste Rd Bent 2 H‐Pile  1.446 

6  Celeste RD A1  H‐Pile  2.006 

7  Moores Mill RD  H‐Pile  1.732 

8  CBD 7A Bent 2 H‐Pile  3.114 

9  SR 41  H‐Pile  1.008 

10  202  Concrete  1.387 

11  204  Concrete  0.875 

12  207  Concrete  1.186 

13  502  Concrete  1.372 

14  213  H‐Pile  1.778 

15  1101  H‐Pile  2.316 

16  1901  H‐Pile  1.880 

17  6502  H‐Pile  1.622 

18  CBD Bridge A1  H‐Pile  1.152 

Table 21 shows that the bias values for DLT range from 0.875 to 3.114. Some of 

these bias values might be excluded due to the evaluation of data cases performed in the 

next section 

7.3.2 Data cases: Filtering data. 

In the same way as done WBUZPILE and DRIVEN, the DLT data shall be 

filtered from outliers in order to assess its quality. After reviewing the data and 

documents provided by ALDOT, it was noticed that no pile data point from DLT satisfies 

the requirements to be excluded as an outlier according to Allen et al. [9]. In other words, 

the definitive resistance factors shall be calibrated with the entire dataset. Nevertheless, 

this section still evaluates the magnitude of the effect of the data cases on the calibrated 

resistance factors for DLT. The evaluation of DLT is performed as a single group since 
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the data is composed by just 18 points and the considered data cases are similar to the 

evaluation of WBUZPILE and DRIVEN. 

The data case B uses boxplots as graphical tool to identify outliers. Figure 40 

shows the boxplot for DLT data. These graphs mark outliers with an asterisk (*). 
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Figure 40: Boxplot of resistance bias values for DLT. 

As shown in Figure 40, the DLT data shows 1 outlier (3.114) for data case B. 

The data case C uses the two standard deviations criterion to identify outliers. The 

outlier and excluded data point is just 1 value (3.114) for DLT dataset, which is the same 

for database B as well. Therefore, the evaluation of data case B and C are equal for DLT. 
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7.3.3 Type of probability distribution. 

This section illustrates the examination of the distribution for the DLT data. The 

data is subjected to the Anderson-Darling test in order to determine can be assumed as 

lognormal probability distributed with 95% as confidence interval. Table 22 shows the 

results of the Anderson-Darling test applied to the three data cases of DLT.  

Table 22: Goodness Fit Test results for DLT. 

Design 
method 

Data set  Case 
Lognormal 

AD  p‐value 

Data Case A  0.211 0.831 

DLT  All piles Data Case B  0.208 0.840 

Data Case C  0.208 0.840 

The p-values shown in Table 22 are larger than 0.05, which indicate that the 

lognormal distribution is accepted. 

7.3.4 Mean, standard deviation, and coefficient of variation. 

As stated before, filtering or not the data can produce a significant modification of 

the basic descriptive characteristics of the data. The mean, standard deviation, and COV 

for DLT data cases are shown in Table 23. 

Table 23: Resistance statistical characteristics for DLT. 

Statistical data summary for λR 

Design 
method 

Data set  Case Data case A  Data case B Data case C 

DLT 
(PDA/iCAP) 

All data 

Mean (λR)  1.600 1.511  1.511

𝜎  0.563 0.430  0.430 

COVR 0.352 0.284  0.284 
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As shown in Table 23, the effect of data cases is seen in different mean, standard 

deviation, and coefficient of variation values. The data case A shows the largest bias 

values as well as the standard deviation and coefficient of variation values. These results 

were expected since the excluded values are typically located in the upper limit within the 

structural reliability field. On the other hand, the data case B and C produce the same 

statistical parameters, which values are lower than the data case A. As mentioned before, 

the data shown in Table 23 represents the initial point to perform the actual LRFD 

calibration of resistance factors. 

7.4 Actual LRFD Resistance factor calibration. 

Once the statistical characterization and the pre-calibration considerations have 

been successfully completed, the actual calibration based on probabilistic methods can be 

performed. This section shows the detailed procedure of the FOSM, FORM, and MCS 

calibration only for the design program WBUZPILE, redundant piles, all piles data set, 

and data case A. The procedure for the rest of calibrations are not shown but they follow 

the same methodology.  

7.4.1 Actual FOSM calibration. 

As mentioned before FOSM is a closed-form solution based in reliability. The 

actual FOSM calibration procedure is shown as follows: 

Step 1: The statistical parameters for resistance and load variables used are the 

values from Table 24. 
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Table 24: Statistical parameters for resistance and load variables for 
example of calibration. 

Parameter  Resistance Dead load  Live load 

λ  0.979 1.050 1.150 

COV  0.633 0.100 0.200 

σ  0.646 0.105 1.230 

γ  ‐‐‐‐ 1.25 1.75 

Step 2: The target reliability index, which measures the probability of failure 

desired, is found in section 7.1.1 of this study, and for redundant piles. is the 

following:

β  2.33  

Step 3: Considering the Eq. 43, the resistance factor is computed for every βT: 

For βT1 = 2.33: 

𝜆  
ƴ

𝑄
𝑄  1 𝐶𝑂𝑉  

 𝐶𝑂𝑉
ƴ   

1 𝐶𝑂𝑉
ф   

𝜆
𝑄

𝑄  𝜆  exp β ln 1  𝐶𝑂𝑉 1  𝐶𝑂𝑉  
  𝐶𝑂𝑉  

1  0.1  0.20.979 ∗ 1.25 ∗ 2  1.75  1  0.633
 

1.05 ∗ 2  1.15 exp 2.33 ln 1  0.633 1  0.1  0.2  

𝟎.  𝟐𝟓  

Step 4: Once the resistance factor has been calculated, the efficiency bias factor is 

obtained through the following equation:

ф
𝜆

  
0.25

0.979 
𝟎.  𝟐𝟔  

The calibration shown in this section belongs to the all data set, data case A, and 

βT=2.33. Nevertheless, the FOSM calibration is also performed for all data sets (all piles, 

steel H-piles, and concrete piles), all data cases (A, B and C), and all target reliability 

index (2.33, 2.50, and 3.00). 
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7.4.2 Actual FORM calibration. 

The actual FORM calibration procedure for WBUZPILE (All data set of piles) 

with data case A for βT = 2.33 is shown in the next procedure: 

Step 1: Define the failure equation 

As stated before, the failure equation is usually the difference between the 

resistance and the load random variable. Thus, the failure equation considered for 

the case of driven piles is the following: 

𝐺 𝑅 𝑄,  

where: 

𝑅  𝑟  ∗ 𝜆 , and 

𝑄  𝑞  ∗ 𝜆 𝑞 𝜆  

Step 2: Choose random variable distributions 

As mentioned before, Paikowsky et al. [6] suggests taking bias factors as 

lognormal random variables. In addition, histograms and probability plots for 

resistance and load bias values developed in the FOSM calibration suggest the 

following random variable distribution: 

 Resistance random variable distribution: Lognormal (as recommended by 

AASHTO [38] and Scott and Salgado [39]) 

 Load random variable distribution: Lognormal (as suggested by NCHRP 

507 [6]) 

Step 3: Choose LRFD factors to analyze 

Following LRFD methodology and Styler’s procedure [7], the calculations are 

performed as shown below: 

𝑞
𝑞  

𝜂  2  

ф  ∗ 𝑟
𝜂 ∗  ƴ  ƴ  

 
0.27 ∗ 630 𝑘𝑖𝑝𝑠 

𝑞   
2 ∗ 1.25  1.75  

 40.02 𝑘𝑖𝑝𝑠 

𝑞  𝜂  ∗  𝑞   2 ∗ 40.02 𝑘𝑖𝑝𝑠  80.05 𝑘𝑖𝑝𝑠 
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𝑄

𝐸 𝑄

𝜂 ∗ ƴ
ф

ƴ
𝜂 1  

0.27 ∗ 2 1
𝑆𝑙𝑜𝑝𝑒  

2 ∗ 1.25  1.75  
0.19  

Step 4: Calculate the initial design point 

Assuming a nominal resistance of 630 kips, in accordance to Styler [7] who said 

that the first nominal resistance assumed will not affect the calibration, the 

maximum acceptable load is 151.2 kips. Considering the dead-to-live ratio of 2, 

the dead load is 100.8 kips and the live load is 50.4 kips. Consequently, the limit 

state equation shows acceptable values: 

ф 𝑟   𝛾𝑄  

0.27 ∗ 630  1.25 ∗ 80.05   1.75  40.02  

170.1 𝑘𝑖𝑝𝑠  170.1 𝑘𝑖𝑝𝑠 

Therefore, the initial design point is taken as (630 kips, 120.07 kips). Then, the 

expected resistance is calculated as follows: 

𝑅  𝑟  ∗ 𝜆   630 𝑘𝑖𝑝𝑠 ∗ 0.979  616.80 𝑘𝑖𝑝𝑠, 

The expected load is calculated as follows:

𝑄  𝑞  ∗ 𝜆  𝑞  ∗ 𝜆   80.05 𝑘𝑖𝑝𝑠 ∗ 1.05   40.02 𝑘𝑖𝑝𝑠 ∗ 1.15  

 130.08 𝑘𝑖𝑝𝑠, 

Thus, the most probable resistance and load combinations is (616.8 kips, 130.8 

kips). In the first iteration in table 15, these values are used to calculate the 

equivalent normal variable parameters. 

Moreover, the expected values for the R and Q random variables are calculated as 

shown below: 

𝐸 𝑅  𝑟  ∗ 𝜆   630 𝑘𝑖𝑝𝑠 ∗ 0.979  616.80 𝑘𝑖𝑝𝑠 

𝐸 𝑄  𝑞  ∗ 𝜆  𝑞  ∗ 𝜆   80.05 𝑘𝑖𝑝𝑠 ∗ 1.05   40.02 𝑘𝑖𝑝𝑠 ∗ 1.15  

 130.08 𝑘𝑖𝑝𝑠 

Then, the normal standard deviation for the resistance and load is also computed 

as follows: 

𝜎  𝑟 𝜎   630 𝑘𝑖𝑝𝑠 ∗ 0.633  398.72 𝑘𝑖𝑝𝑠 
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𝜎

𝐸 𝑅

𝐸 𝑄

 𝑞 𝜎   80.05  ∗ 0.105   40.02  ∗ 0.23𝜎   𝑞 𝜎

 12.465 𝑘𝑖𝑝𝑠 

Step 5: Transform into an equivalent normal distribution 

In this step, it is necessary to transform an equivalent normal distribution using 

the design point (r, q). For the first iteration, the design point is equal to the 

expected resistance and load random values (E[R], E[Q]). The mean and standard 

deviation can be computed with the following equations: 

𝜎   
𝑝𝑑𝑓 Ф 𝐹 𝑟  

 
𝑝𝑑𝑓 Ф 𝐹 616.80  

 
0.3819
0.0010 

 364.4681 
𝑓 𝑟  𝑓 616.80

𝐸 𝑅  𝑟   Ф 𝐹 𝑟 𝜎   616.80  Ф 𝐹 616.80 364.4681 

 616.80  0.2931 ∗ 364.4681   509.1113 

𝜎   
𝑝𝑑𝑓 Ф  𝐹 𝑞  

 
𝑝𝑑𝑓 Ф  𝐹 130.08  

 
0.3985
0.0320 

 12.4368 
𝑓 𝑞  𝑓 130.08  

𝐸 𝑄  𝑞   Ф  𝐹 𝑞 𝜎   130.08  Ф  𝐹 130.08  12.4368 

 130.08  0.0478 ∗ 12.4368   129.4819 

Step 6: Transform original random variables to standard normal random 

variables 

The standard normal space design point is calculated from the real space design 

point as follows:

 𝐸 𝑅  
 
616.80  509.1113 

𝑟  
𝐸 𝑅 

 0.29545 
𝜎  364.4681 

 𝐸 𝑄  
 
130.08  129.4819 

𝑞  
𝐸 𝑄 

 0.04781 
𝜎  12.4368 

Step 7: Rewrite the failure in terms of the standard normal random variables 

It is important to transform the failure equation to standard normal random 

variables using the following equations: 

𝐺 𝑅 𝑄  

𝐺   𝑅 𝜎  𝐸 𝑅  𝑄 𝜎  𝐸 𝑄  
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𝑟∗

𝑞∗

Step 8: Compute a new trial design point 

The new trial design point (r*, q*) is computed using as shown below: 

𝑟 𝜕𝑅
𝜕𝐺′

 
𝑞  

𝜕𝐺′ 
𝑅
𝜕𝐺′

𝜕𝑄  
𝐺′ 𝑟,  𝑞  

 
𝐸 𝑅  𝐸 𝑄 𝜎

𝑟∗  

 
𝜕𝐺′  

  
𝜕𝐺′ 𝜎  𝜎  

𝜕𝑅  𝜕𝑄  

 
509.1113  129.4816  ∗ 364.4681 

 1.04039 
364.4681   12.4368  

𝑟 𝜕𝑅
𝜕𝐺′

 
𝑞  

𝜕𝐺′ 
𝑄
𝜕𝐺′

𝜕𝑄  
𝐺′ 𝑟,  𝑞  

 
𝐸 𝑅  𝐸 𝑄 𝜎

𝑞∗  

 
𝜕𝐺′  

  
𝜕𝐺′ 𝜎  𝜎  

𝜕𝑅  𝜕𝑄  

 
509.1113  129.4819  ∗ 12.4368 

 0.03550 
364.4681   12.4368  

As mentioned by Styler [7], this new design point represents the closest distance 

from the origin to this failure line. The failure line barely varies after each 

iteration. 

Step 9: Calculate the reliability index. 

The reliability index, which is the closest distance from the origin to the failure 

line, is calculated as follows: 

β  𝑟∗  𝑞∗   1.05323   0.03622   1.04099 

Step 10: Repetitive iteration (FORM iteration) 

The new design point is transformed back to the real space using the following 

equations:

𝑟  𝑟∗𝜎  𝐸 𝑅   1.04039 ∗ 364.4681   509.1113  129.9234 

𝑞  𝑞∗𝜎  𝐸 𝑄   0.03550 ∗ 12.4368   129.4819  129.9234 

Then, the equivalent normal distribution using this new design point (r, q) is 

recalculated. This procedure is repeated until the reliability index β remains 

stable. It should be noted that if the stable value of β is not the desired value, the 

resistance factor is not the right one. Therefore, the initial value of φ shall be 
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modified until getting a stable β similar to βT. The iteration process is shown in 

Tables 25 and 26: 

Table 25: FORM iterations for Real Space to Equivalent Normal Variable 
Parameters 

  Real  space  
Normal Random variables parameters 

Iteration r  q  E [Rn] σRn E [Qn] σQn 

630.0000  120.0705 
1  616.7945  130.0764 509.1113 364.4681 129.4819  12.4368 
2  129.9234  129.9234 309.6083 76.7726 129.4825  12.4221 
3  134.0780  134.0780 315.2883 79.2276 129.4027  12.8194 

Table 26: FORM Iterations in Normal Space 

  Normal  space  

Iteration r  q  r*  q*  β  β 

1  0.29545  0.04781 ‐1.04039 0.03550 1.04099  1.04 
2  ‐2.34048  0.03549 ‐2.28636 0.36994 2.31610  2.32 
3  ‐2.28721  0.36471 ‐2.28636 0.36994 2.31610  2.32 

As seen in Tables 25 and 26, the value of the reliability index remains stable in 

the third iteration hence it is possible to stop the iteration process in this step for 

this specific case. However, the spreadsheet developed for this research paper 

contemplates 6 iterations since other cases need a greater number of iterations. If 

more iterations than needed are performed, the value for β will not be affected. 

In this case, the closest two decimal resistance factor value that matches the 

reliability index (βT = 2.33) is 0.27 with a β of 2.32. Consequently, it is possible 

to conclude that for this specific case, the FORM calibrated resistance value is 

0.27. 
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Step 10: Once the resistance factor has been calculated, the efficiency bias factor 

is obtained through the following equation:

ф
𝜆

  
0.27

0.979 
𝟎.  𝟐𝟖  

The calibration shown in this section belongs to the all data set, data case A, and 

βT=2.33. Nevertheless, the FORM calibration is also performed for all data sets 

(all piles, steel H-piles, and concrete piles), all data cases (A, B and C), and all 

target reliability index (2.33, 2.50, and 3.00). 

7.4.3 Actual Monte Carlo Simulation Calibration. 

The actual Monte Carlo calibration procedure for WBUZPILE (All data set of 

piles) with data case A for βT = 2.33 is described as follows: 

Step 1: The limit state equation used for this calibration is the one stated in 

Equation 44. 

Step 2: In this example, the target reliability index is 2.33 considered for non-

redundant piles. 

Step 3: The number of simulations is computed as follows 

𝑁  
1 𝑃   

 
1 0.01

0.1  ∗ 0.01  
 9900 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 

𝑉 ∗ 𝑃   

Step 4: As mentioned before, Q and R have lognormal distributions. Prior to the 

simulation, the values for μln and σln must be computed. The live load and dead 

load shall be separated for the load random variable. In case of the dead load, μln 

and σln are calculated as follows: 

𝜎   𝐿𝑁 𝐶𝑂𝑉  1 .  𝐿𝑁 0.10  1 .   0.0998, 

Then, the value of 𝑄𝐿 is taken λQD. Thus, 

𝜇  𝐿𝑁 𝜆   0.5𝜎  𝐿𝑁 1.05  0.5  ∗  0.0998   0.0438, 

In case of the live load, μln and σln are calculated as follows: 

𝜎   𝐿𝑁 𝐶𝑂𝑉  1 .  𝐿𝑁 0.20  1 .   0.198, 
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𝑄𝐷

𝑔

Then, the value of 𝑄𝐿 is taken λQD. Thus, 

𝜇  𝐿𝑁 𝜆   0.5𝜎  𝐿𝑁 1.15  0.5  ∗  0.198   0.120, 

For the resistance, calculate μln and σln as follows: 

𝜎  𝐿𝑁 𝐶𝑂𝑉  1 .  𝐿𝑁 0.646  1 .   0.591, 

Then, the value of 𝑅 is taken λR. Thus, 

𝜇  𝐿𝑁 𝜆  0.5𝜎  𝐿𝑁 0.979  0.5  ∗  0.591   0.196, 

Next, the simulations are generated. For the dead load, it is shown the way 1 

simulated value is generated: 

𝑄𝐷  ex  p 𝜇  𝜎 𝑧   𝑒𝑥𝑝 0.0438  0.0998 ∗ 0.176  

 1.027 

In the same way, for the live load, it is shown the way 1 simulated value is 

generated:

𝑄𝐿  ex  p 𝜇  𝜎 𝑧   𝑒𝑥𝑝 0.120  0.198 ∗ 0.822   0.958 

For the resistance, it is shown the way 1 simulated value is generated: 

𝑅  ex  p 𝜇  𝜎 𝑧   𝑒𝑥𝑝 0.196  0.591 ∗ 1.428   0.354 

Step 5: Before, calculating the limit state function g, γavg is calculated as follows. 

Ƴ   
𝜆 ƴ 𝜂  𝜆 ƴ  

 
1.05 ∗ 1.25 ∗ 2  1.15 ∗ 1.75 

 1.427 
𝜆 𝜂  𝜆  1.05 ∗ 2  1.15 

Then, the resistance trial factor set 𝝋𝑹 is 0.28. Next, calculate g as follows:  

ƴ   ƴ  𝜂  𝑄𝐿
𝑔 𝜆 , 𝜑  

 
𝜆 , 𝜂  𝜆 , 𝑅  

𝜑  
 
𝑄𝐷 

 𝜂 1  𝜂 1  

0.28 
 
1.027 2   0.958 

 0.354 
1.427 

2 1  
 0.798  0 𝑁𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

It should be noted that this example shows the calculation of just 1 simulation. 

The rest of the simulations shall be computed in the same way. 

Step 6: Once, the 9900 simulations were performed. Some of them are shown in 

Table 27. 
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Table 27: First 10 simulations out of 9900 for the case exposed in the MC 
example 

𝑅 𝑄𝐿 𝑄𝐷 N°  Zi‐R  Zi‐QL  Zi‐QD  gi 

1  ‐1.427883  0.353626  ‐0.821766 0.958302 ‐0.175508 1.026657  0.798261 
2  1.079001  1.555535  0.241724 1.182964 ‐1.249959 0.922313  6.918050 
3  0.898706  1.398335  ‐1.398701 0.854832 ‐0.759289 0.968579  6.195465 
4  0.891439  1.392343  ‐0.415830 1.038523 0.125609 1.057962  6.044113 
5  0.567311  1.149651  0.516243 1.249058 0.468670 1.094793  4.712586 
6  0.136265  0.891144  ‐0.285137 1.065754 ‐1.009415 0.944712  3.556349 
7  0.347604  1.009679  1.956198 1.661235 ‐0.255430 1.018505  3.912732 
8  1.133966  1.606887  0.893180 1.345868 1.866520 1.258604  6.901253 
9  ‐0.220153  0.721907  0.939831 1.358359 0.183949 1.064137  2.516737 

10  ‐1.427883  0.353626  ‐0.821766 0.958302 ‐0.175508 1.026657  0.798261 

As shown in Table 27, the simulations for each random variable are generated 

individually. Then, they interact with each other once the limit state equation is 

applied. The limit state function is denoted by gi and determines if failure exists or 

not. If gi is lower than zero, failure occurs. Table 27 shows the first 10 iterations 

where no failure exists since every gi are equal or larger than zero. Nonetheless, 

when the 9900 simulations are evaluated, the number of failures n (when gi < 0) is 

102. Therefore, the probability of failure is calculated:  

𝑁
 

102
𝑃   

𝑛 

9900 
 0.0103 

Step 7: The reliability index is calculated as follows: 

β  𝑁𝑂𝑅𝑀𝑆𝐼𝑁𝑉 𝑃  𝑁𝑂𝑅𝑀𝑆𝐼𝑁𝑉 0.0103  2.32  

Step 8: It is supposed to alter the resistance factor until β and βT (2.33) converge. 

However, in this case, the difference between β and βT is already within or lower 

than the coefficient of variation established before (0.10). Consequently, it is 
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concluded that the resistance factor calibrated through Monte Carlo simulation for 

this case is 0.28. 

Step 9: Once the resistance factor has been calculated, the efficiency bias factor is 

obtained through the following equation:

ф
𝜆

  
0.28

0.979 
𝟎.  𝟐𝟗  

The calibration shown in this section belongs to the all data set, data case A, and 

βT=2.33. Nevertheless, the MCS calibration is also performed for all data sets (all 

piles, steel H-piles, and concrete piles), all data cases (A, B and C), and all target 

reliability index (2.33, 2.50, and 3.00). 
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CHAPTER VIII - PRELIMINARY RESISTANCE FACTORS 

This chapter presents the preliminary results of the LRFD calibration of resistance 

factors for WBUZPILE, DRIVEN, and DLT. The results for each prediction or 

construction control method, each calibration method, each data sets, data cases, and 

target reliability index, are organized in tables and graphs for a better understanding.  

8.1 Preliminary resistance factors for WBUZPILE and DRIVEN. 

Tables 28 to 30 present the preliminary resistance factors obtained through 

FOSM, FORM, and Monte Carlo Simulation, for WBUZPILE and DRIVEN, as well as 

an average between the three methods, for all data sets, data cases, and target reliability 

index. The tables include the summary of the statistics of the mean resistance bias, along 

with the individual resistance factors φR and efficiency factors for every calibration 

method. 
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Table 28: Preliminary resistance factors for Data Case A. 

Design 
Method 

Dataset 
# of 
Piles 

Mean 
(λR) 

COVR β 
FOSM FORM MC Average 
φR φR/λ φR φR/λ φR φR/λ φR φR/λ 

WBUZPILE 

All Piles  53 0.979 0.64 
3.00 0.17 0.17 0.18 0.18 0.19 0.19  0.18 0.18 
2.50 0.23 0.23 0.24 0.25 0.25 0.26  0.24 0.25 
2.33 0.25 0.26 0.27 0.28 0.28 0.29  0.27 0.27 

Steel H‐
Piles 

36 1.175 0.563 
3.00 0.25 0.21 0.27 0.23 0.26 0.22  0.26 0.22 
2.50 0.33 0.28 0.35 0.30 0.37 0.31  0.35 0.30 
2.33 0.36 0.31 0.38 0.32 0.39 0.33  0.38 0.32 

Concrete 
Piles 

17 0.564 0.486 
3.00 0.15 0.27 0.16 0.28 0.17 0.30  0.16 0.28 
2.50 0.19 0.34 0.20 0.35 0.21 0.37  0.20 0.35 
2.33 0.21 0.37 0.22 0.39 0.23 0.41  0.22 0.39 

DRIVEN 

All Piles  53 0.979 0.640 
3.00 0.13 0.12 0.14 0.13 0.14 0.13  0.14 0.13 
2.50 0.19 0.18 0.20 0.19 0.20 0.19  0.20 0.19 
2.33 0.21 0.20 0.22 0.21 0.22 0.21  0.22 0.21 

Steel H‐
Piles 

36 1.230 0.721 
3.00 0.17 0.14 0.18 0.15 0.20 0.16  0.18 0.15 
2.50 0.24 0.20 0.25 0.20 0.26 0.21  0.25 0.20 
2.33 0.27 0.22 0.28 0.23 0.28 0.23  0.28 0.22 

Concrete 
Piles 

17 0.664 0.527 
3.00 0.15 0.23 0.17 0.26 0.17 0.26  0.16 0.25 
2.50 0.20 0.30 0.21 0.32 0.23 0.35  0.21 0.32 
2.33 0.22 0.33 0.23 0.35 0.25 0.38  0.23 0.35 

Table 29: Preliminary resistance factors for Data Case B. 

Design 
Method 

Data set 
# of 
Piles 

Mean 
(λR) 

COVR β 
FOSM FORM MC Average 
φR φR/λ φR φR/λ φR φR/λ φR φR/λ 

WBUZPILE 

All Piles  50 0.879 0.561 
3.00 0.19 0.22 0.20 0.23 0.21 0.24  0.20 0.23 
2.50 0.25 0.28 0.27 0.31 0.27 0.31  0.26 0.30 
2.33 0.27 0.31 0.29 0.33 0.30 0.34  0.29 0.33 

Steel H‐
Piles 

33 1.175 0.563 
3.00 0.25 0.21 0.27 0.23 0.26 0.22  0.26 0.22 
2.50 0.33 0.28 0.35 0.30 0.37 0.31  0.35 0.30 
2.33 0.36 0.31 0.38 0.32 0.39 0.33  0.38 0.32 

Concrete 
Piles 

17 0.564 0.486 
3.00 0.15 0.27 0.16 0.28 0.16 0.28  0.16 0.28 
2.50 0.19 0.34 0.20 0.35 0.20 0.35  0.20 0.35 
2.33 0.21 0.37 0.22 0.39 0.22 0.39  0.22 0.38 

DRIVEN 

All Piles  52 0.970 0.582 
3.00 0.20 0.21 0.21 0.22 0.22 0.23  0.21 0.22 
2.50 0.26 0.27 0.28 0.29 0.29 0.30  0.28 0.29 
2.33 0.29 0.30 0.31 0.32 0.31 0.32  0.30 0.31 

Steel H‐
Piles 

35 1.119 0.529 
3.00 0.26 0.23 0.28 0.25 0.29 0.26  0.28 0.25 
2.50 0.34 0.30 0.36 0.32 0.38 0.34  0.36 0.32 
2.33 0.37 0.33 0.40 0.36 0.41 0.37  0.39 0.35 

Concrete 
Piles 

17 0.609 0.450 
3.00 0.17 0.28 0.19 0.31 0.20 0.33  0.19 0.31 
2.50 0.22 0.36 0.24 0.39 0.24 0.39  0.23 0.38 
2.33 0.24 0.39 0.26 0.43 0.26 0.43  0.25 0.42 
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Table 30: Preliminary resistance factors for Data Case C. 

Design 
Method 

Dataset 
# of 
Piles 

Mean 
(λR) 

COVR β 
FOSM FORM MC Average 
φR φR/λ φR φR/λ φR φR/λ φR φR/λ 

WBUZPILE 

All Piles  49 0.850 0.535 
3.00 0.19 0.22 0.21 0.25 0.22 0.26  0.21 0.24 
2.50 0.26 0.31 0.27 0.32 0.28 0.33  0.27 0.32 
2.33 0.28 0.33 0.30 0.35 0.30 0.35  0.29 0.35 

Steel H‐
Piles 

33 1.041 0.486 
3.00 0.27 0.26 0.30 0.29 0.31 0.30  0.29 0.28 
2.50 0.35 0.34 0.38 0.37 0.38 0.37  0.37 0.36 
2.33 0.38 0.37 0.41 0.39 0.41 0.39  0.40 0.38 

Concrete 
Piles 

16 0.520 0.404 
3.00 0.17 0.33 0.19 0.37 0.19 0.37  0.18 0.35 
2.50 0.21 0.40 0.23 0.44 0.24 0.46  0.23 0.44 
2.33 0.23 0.44 0.24 0.46 0.25 0.48  0.24 0.46 

DRIVEN 

All Piles  52 0.970 0.582 
3.00 0.20 0.21 0.21 0.22 0.22 0.23  0.21 0.22 
2.50 0.26 0.27 0.28 0.29 0.28 0.29  0.27 0.28 
2.33 0.29 0.30 0.31 0.32 0.31 0.32  0.30 0.31 

Steel H‐
Piles 

35 1.119 0.529 
3.00 0.26 0.23 0.28 0.25 0.30 0.27  0.28 0.25 
2.50 0.34 0.30 0.36 0.32 0.38 0.34  0.36 0.32 
2.33 0.37 0.33 0.40 0.36 0.40 0.36  0.39 0.35 

Concrete 
Piles 

16 0.609 0.450 
3.00 0.17 0.28 0.19 0.31 0.20 0.33  0.19 0.31 
2.50 0.22 0.36 0.24 0.39 0.24 0.39  0.23 0.38 
2.33 0.24 0.39 0.26 0.43 0.26 0.43  0.25 0.42 

Tables 28 to 30 reveal that the data case A presents the most conservative method 

with an average resistance factor of 0.23 and average efficiency factor 0.25. The data 

case B shows an average resistance factor of 0.27 and an average efficiency factor of 

0.31, which represents a 17% and 24% of increase from data case A results, respectively. 

The data case C shows an average resistance factor of 0.28 and an average efficiency 

factor of 0.33, which represents a 22% and a 32% of increase from data case A results, 

respectively. Data cases B and C shows very similar resistance and efficiency factors.  

Data case A is used to compare the results from calibrations method FOSM, 

FORM, and MCS. Data cases B and C results are not compared since they are not able to 

be taken as definitive factors for the conclusions of this study. Figure 41 shows a 

comparison of the resistance factor between FOSM and FORM, Figure 42 shows a 

comparison of the resistance factor between FOSM and MCS, and Figure 43 shows a 

comparison of the resistance factor between FORM and MCS. 
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Figure 41: FOSM vs FORM results. 
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Figure 42: FOSM vs MCS results 
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Figure 43: FORM vs MCS results. 

When comparing FOSM, FORM, and MCS results from data case A, Table 28 

and Figures 41 to 43 show that FORM produces 8.1% higher resistance factors than 

FOSM in average, MCS produces 11.1% than FOSM in average, and MCS produces 

2.8% higher resistance factors than FORM in average. Therefore, it can be concluded that 

FOSM is the most conservative calibration method while MCS is the least most 

conservative calibration method. 

8.2 Preliminary resistance factors for control field tests. 

Tables 31 to 32 present the preliminary resistance factors obtained through 

FOSM, FORM, and Monte Carlo Simulation, for DLT, as well as an average between the 

three methods, for all data sets, data cases, and target reliability index. The tables include 
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the summary of the statistics of the mean resistance bias, along with the individual 

resistance factors φR and efficiency factors for every calibration method. 

Table 31: DLT Resistance factors for Data Case A. 

Design 
Data set 

# of  Mean 
COVR β 

FOSM FORM MC Average 
Method Piles (λR)  φR  φR/λ φR  φR/λ φR  φR/λ φR  φR/λ 

3.00 0.60 0.38 0.68 0.43 0.70 0.44  0.66 0.41 

DLT  All Piles  18  1.600 0.352 2.50 0.73 0.46 0.82 0.51 0.82 0.51  0.79 0.49 

2.33 0.78 0.49 0.87 0.54 0.88 0.55  0.84 0.53 

Table 32: DLT Resistance factors for Data Case B and C. 

Design 
Data set 

# of  Mean 
COVR β 

FOSM FORM MC Average 
Method Piles (λR)  φR  φR/λ φR  φR/λ φR  φR/λ φR  φR/λ 

3.00 0.67 0.44 0.79 0.52 0.80 0.53  0.75 0.50 

DLT  All Piles  17  1.511 0.284 2.50 0.80 0.53 0.91 0.60 0.92 0.61  0.88 0.58 

2.33 0.85 0.56 0.96 0.64 0.97 0.64  0.93 0.61 

Tables 31 to 32 reveal that the data case A presents the most conservative method 

with an average resistance factor of 0.76 and average efficiency factor 0.48. Data cases B 

and C shows equal resistance and efficiency factors since both cases use the dame data.  

The data case B and C show an average resistance factor of 0.85 and an average 

efficiency factor of 0.53, which represents a 12% and 17% of increase from data case A 

results, respectively. 

When comparing FOSM, FORM, and MCS results from data case A, Tables 31 

and 32 show that FOSM is the most conservative calibration method. For the data case A, 

FOSM results show an average resistance factor of 0.70 and an average efficiency factor 

of 0.44. FORM results show an average resistance factor of 0.79 and an average 

efficiency factor of 0.49, which represents a 13% and 11% of increase from FOSM 

results, respectively. MCS results show an average resistance factor of 0.80 and an 
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average efficiency factor of 0.50, which represents a 14% and 14% of increase from 

FOSM results, respectively. MCS shows an average resistance factor 1% higher and an 

efficiency factor 2% higher than FORM.  

8.3 Summary of preliminary resistance factors. 

This chapter showed the preliminary LRFD resistance and efficiency factor results 

for WBUZPILE, DRIVEN, and DLT. Each calibration was performed for each prediction 

method, each calibration method, each data set, each data case, and each target reliability 

index. The results confirmed what was expected since the data case A is the most 

conservative case with the lowest resistance factors and efficiency factors. The evaluation 

of WBUZPILE and DRIVEN shows that the effect of data case B produces 17% higher 

resistance factors and 19% higher efficiency factors than data case A. Data case C 

generates 22% higher resistance factors and 30% higher efficiency factors compared to 

data case A. The evaluation of DLT shows that the effect of data case B and C produce 

12% higher resistance factors and 10% higher efficiency factors than data case A. 

Unfortunately, the data provided by ALDOT does not show proof enough to consider 

data case B or C as definitive results for the final conclusion. However, it was still useful 

to evaluated how significant is their effect on the calibrated resistance factors.  

In addition, it was observed that the calibration method MCS is the least 

conservative method in average with the highest resistance and efficiency factors. 

However, FORM results are slightly lower in average than MCS. The FOSM is the most 

conservative calibration method in every case. 
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CHAPTER IX - SETUP INCORPORATION IN THE CALIBRATION OF 

RESISTANCE FACTORS 

According to Haque and Steward [29], the incorporation of pile setup in the design 

stage would produce meaningful construction cost savings. As stated in chapter 2, pile 

setup represents an increase on the pile capacity over time after the EOID. Larger pile 

capacity can be translated to smaller piles size, depth and number. These three factors 

represent less construction costs to the government and taxpayers. Therefore, this chapter 

attempts to evaluate the incorporation of pile setup in the calibration of resistance factors. 

Besides the static load testing data, dynamic load testing data is necessary to provide the 

increased pile capacity data at periods of time after EOID. 

In regard of LRFD design, Yang and Liang [33] propose to incorporate setup 

resistance factors separated from the EOID resistance factors (following equation 18) as 

the ideal procedure. However, to perform that type of calibration, an acceptable data size 

with SLT or restrikes (BOR) at specific and close time intervals is necessary. The data 

considered in this paper has just 18 EOID data points with their corresponding 18 SLTs 

that have a large variation with data from 2 to 28 days after EOID, which would produce 

resistance factors with limited reliability. In case of restrikes, ALDOT data has just 9 
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BOR data points with an average time interval of 0.30 days after EOID. Other studies 

such us Haque and Abu Farsakh [8] consider time interval of 30, 45, 60, and 90 days after 

EOID. This few BOR tests would also produce resistance factors with limited reliability. 

Nonetheless, it is still possible to calibrate resistance factors for pile setup if the limit 

state equation considers EOID and setup in one term (following equation 17) using and 

the Skov and Denver [1] model.  

The Skov and Denver [1] equation is used to calculate the pile setup resistance 

increase and add to the EOID or SLT resistance as a measured value. It should be noted 

that the Skov and Denver model [1] suggests using a setup factor A = 0.2 for sand and A 

= 0.6 for clay. Nevertheless, Haque and Steward [29] established A = 0.2 for soils in 

Alabama, hence this value is used. The time intervals considered are 30, 45, 60, and 90 

days as considered by Haque and Abu-Farsah [8]. This paper evaluates two cases: The 

first case considers WBUZPILE and DRIVEN as predicted resistance and the SLT plus 

setup as a measured resistance. The second case considers DLT as predicted resistance 

and the SLT plus setup as measured resistance. The LRFD calibrations are performed 

using MCS with all data included (data case A), since it shows the least over-

conservatism and reasonable rigorousness method with consistent results.  

9.1 Setup Incorporation for WBUZPILE and DRIVEN. 

The pile setup incorporation on the static analysis methods can also produce cost 

savings. Thus, this section shows the incorporation of setup on the calibration of 

resistance factors for the prediction methods WBUZPILE and DRIVEN (which work as 

static analysis methods). In order to incorporate the pile setup, the Skov and Denver [1] 

model is used considering the initial time as the actual time at SLT. In this way, setup 

resistance values for 30, 45, 60, and 90 days after EOID are calculated and added to the 

SLT. The resistance factors with setup incorporation for the entire pile data set evaluation 

are shown in Table 33. Also, the variation of the resistance and efficiency factor for the 

WBUZPILE evaluation and the entire pile data set is shown in Figures 44 and 45, 
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respectively. The variation of the resistance and efficiency factor for the DRIVEN 

evaluation and the entire pile data set is shown in Figures 46 and 47, respectively.   

Table 33: Comparison of resistance factors incorporating setup for all data 
set. 

Design method  WBUZPILE  DRIVEN 

Time interval after 
EOID 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

λR 0.979  1.135 1.170 1.194 1.228 1.049 1.213  1.250  1.276 1.313 

σR 0.633  0.733 0.755 0.771 0.793 0.799 0.919  0.947  0.967 0.995 

COVR 0.646  0.646 0.646 0.646 0.646 0.762 0.758  0.758  0.758 0.758 

β = 3.00 

φR 0.19  0.21 0.22 0.22 0.23 0.14 0.17  0.18  0.18 0.18 

Incr.  0%  11% 16% 16% 21% 0% 21%  29%  29% 29% 

φR/λ 0.19  0.19 0.19 0.18 0.19 0.13 0.14  0.14  0.14 0.14 

β = 2.50 

φR 0.25  0.28 0.29 0.30 0.31 0.20 0.23  0.24  0.24 0.25 

Incr.  0%  12% 16% 20% 24% 0% 15%  20%  20% 25% 

φR/λ 0.26  0.25 0.25 0.25 0.25 0.19 0.19  0.19  0.19 0.19 

β = 2.33 

φR 0.28  0.31 0.32 0.33 0.34 0.22 0.26  0.26  0.27 0.28 

Incr.  0%  11% 14% 18% 21% 0% 18%  18%  23% 27% 

φR/λ 0.29  0.27 0.27 0.28 0.28 0.21 0.21  0.21  0.21 0.21 

Average increase  0%  11% 15% 18% 22% 0% 18%  22%  24% 27% 
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Figure 44: Variation of resistance factor with setup incorporation for 
WBUZPILE considering all data set. 
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Figure 45: Variation of efficiency factor with setup incorporation for 
WBUZPILE, considering all data set. 
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Figure 46: Variation of resistance factor with setup incorporation for 
DRIVEN, considering all data set. 
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Figure 47: Variation of efficiency factor with setup incorporation for 
DRIVEN, considering all data set. 
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The resistance factors with setup incorporation for the steel H-piles data set 

evaluation is shown in Table 34. Also, the variation of the resistance and efficiency factor 

for the WBUZPILE evaluation and the steel H-piles data set is shown in Figures 48 and 

49, respectively. The variation of the resistance and efficiency factor for the DRIVEN 

evaluation and the steel H-piles data set is shown in Figures 50 and 51, respectively.  

Table 34: Comparison of resistance factors incorporating setup for Steel-H 
Piles. 

Design method  WBUZPILE  DRIVEN 

Time Interval after 
EOID 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

λR 1.175  1.377 1.419 1.448 1.489 1.230 1.441  1.485  1.515 1.559 

σR 0.662  0.752 0.775 0.792 0.815 0.887 1.009  1.040  1.062 1.093 

COVR 0.563  0.546 0.547 0.547 0.547 0.721 0.700  0.700  0.701 0.701 

β = 3.00 

φR 0.26  0.33 0.34 0.35 0.36 0.20 0.23  0.24  0.25 0.25 

Incr.  0%  35% 38% 38% 42% 0% 15%  20%  25% 30% 

φR/λ 0.22  0.24 0.24 0.24 0.24 0.16 0.16  0.16  0.16 0.16 

β = 2.50 

φR 0.37  0.44 0.44 0.45 0.47 0.26 0.32  0.34  0.35 0.35 

Incr.  0%  24% 24% 27% 30% 0% 23%  31%  35% 38% 

φR/λ 0.31  0.33 0.32 0.32 0.32 0.21 0.22  0.23  0.23 0.22 

β = 2.33 

φR 0.39  0.49 0.49 0.50 0.51 0.28 0.36  0.37  0.37 0.38 

Incr.  0%  28% 28% 31% 31% 0% 29%  32%  32% 43% 

φR/λ 0.33  0.36 0.35 0.35 0.34 0.23 0.25  0.25  0.24 0.24 

Average increase  0%  24% 25% 28% 32% 0% 22%  25%  31% 32% 
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Figure 48: Variation of resistance factor with setup incorporation for 
WBUZPILE, considering Steel H-Piles data set. 
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Figure 49: Variation of efficiency factor with setup incorporation for 
WBUZPILE, considering Steel H-Piles data set. 
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Figure 50: Variation of resistance factor with setup incorporation for 
DRIVEN, considering Steel H-Piles data set. 
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Figure 51: Variation of efficiency factor with setup incorporation for 
DRIVEN, considering Steel H-Piles data set. 
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The resistance factors with setup incorporation for the concrete piles data set 

evaluation is shown in Table 35. Also, the variation of the resistance and efficiency factor 

for the WBUZPILE evaluation and the concrete piles data set is shown in Figures 52 and 

53, respectively. The variation of the resistance and efficiency factor for the DRIVEN 

evaluation and the concrete piles data set is shown in Figures 54 and 55, respectively. 

Table 35: Comparison of resistance factors incorporating setup for Concrete 
Piles. 

Design method  WBUZPILE  DRIVEN 

Time Interval after 
EOID 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

λR 0.564  0.622 0.642 0.656 0.676 0.664 0.728  0.752  0.768 0.792 

σR 0.274  0.311 0.321 0.327 0.337 0.350 0.392  0.404  0.413 0.425 

COVR 0.486  0.500 0.500 0.499 0.499 0.527 0.538  0.538  0.537 0.537 

β = 3.00 

φR 0.17  0.17 0.18 0.19 0.19 0.17 0.18  0.18  0.19 0.21 

Incr.  0%  6% 12% 18% 18% 0% 18%  18%  24% 29% 

φR/λ 0.30  0.27 0.28 0.29 0.28 0.26 0.25  0.24  0.25 0.27 

β = 2.50 

φR 0.21  0.22 0.23 0.24 0.25 0.23 0.24  0.24  0.25 0.25 

Incr.  0%  10% 10% 14% 19% 0% 13%  13%  17% 22% 

φR/λ 0.37  0.35 0.36 0.37 0.37 0.35 0.33  0.32  0.33 0.32 

β = 2.33 

φR 0.23  0.24 0.25 0.25 0.26 0.25 0.26  0.26  0.27 0.28 

Incr.  0%  9% 13% 13% 17% 0% 12%  12%  16% 16% 

φR/λ 0.41  0.39 0.39 0.38 0.38 0.38 0.36  0.35  0.35 0.35 

Average increase  0%  3% 8% 12% 15% 0% 5%  5%  9% 15% 
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Figure 52: Variation of resistance factor with setup incorporation for 
WBUZPILE, considering Concrete Piles data set. 
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Figure 53: Variation of efficiency factor with setup incorporation for 
WBUZPILE, considering Concrete Piles data set. 
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Figure 54: Variation of resistance factor with setup incorporation for 
DRIVEN, considering Concrete Piles data set. 
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Figure 55: Variation of efficiency factor with setup incorporation for 
DRIVEN, considering Concrete Piles data set. 
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As shown in Tables 33 to 35 and Figures 44 to 55, the mean bias values increase 

for all the cases with respect of the ones with the actual SLTs as measured resistance, 

which decreases the COV, and generates an increase the resistance factors during the 

calibration stage. However, all the standard deviation values increase as well, which will 

increase the COV, and generates a decrease the resistance factors during the calibration. 

In other word, the standard deviation is inversely proportional to the mean (𝜎 ∝  1/𝜇) for 

the data distributions considered in this study. Consequently, it is better to evaluate the 

effect on the COV individually. The case of all data set shows that the COV remains 

stable for WBUZPILE and decreases for DRIVEN. The case of the steel H-Piles data set 

shows that the COV for WBUZPILE and DRIVEN slightly decrease. The case of 

concrete piles shows that the COV for WBUZPILE and DRIVEN slightly increase.  

Since the resistance factor depends on the bias and the COV, each case shall be 

analyzed individually as well. For the case of all data set, the resistance factors increase 

from 11 % to 29 %. For the case of the steel H-piles, the resistance factors increase from 

15% to 36%. For the case of the concrete piles, the resistance factors increase from 0% to 

24%. It is demonstrated that even though the COV slightly increases (which tends to 

decrease the resistance factors), the substantially inflated bias value have a larger effect 

on the resistance factors. In addition, it is seen that the steel H-piles have the largest 

resistance factors increase. This phenomenon is a product of larger original bias values 

for the steel-H piles data set, compared to the other two data sets. In other words, larger 

original bias values produce higher bias values at 30, 45, 60, and 90 days. In addition, for 

the case of the steel-H piles, the COV is reduced at 30, 45, 60, and 90 days, which also 

contributes to generate higher resistance factors. Due to these reasons, it can be 

concluded that the setup incorporation has larger effects on steel-H Piles by showing the 

highest increase of resistance factors.   

The bias efficiency values present an interesting behavior as well. The evaluation 

of the all data set reveals that the bias efficiency values slightly increase for some cases 

and decreases for other cases. Hence it is difficult to state a single conclusion about this 

case. However, the steel H-piles and concrete piles data set show a simpler behavior. On 

one hand, the evaluation of the Steel H-piles data set reveals that all the efficiency factors 
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increase. On the other hand, the evaluation of the concrete piles data set exhibits that the 

efficiency factors slightly decrease. The opposite efficiency behavior between the steel 

H-Piles data case and concrete data case is explained by the larger original bias values 

from the steel-H piles data set with respect of the original bias values from the concrete 

values. As stated before, larger original bias values produce higher bias values at 30, 45, 

60, and 90 days. Consequently, the higher resistance factors and higher efficiency factors 

are generated when incorporating setup. These results confirm the fact that pile setup has 

a larger effect on steel H-Piles by showing the highest increase of efficiency factors. 

To put it briefly, the Skov and Denver [1] model made possible the evaluation of 

pile setup incorporation effects on calibration of LRFD resistance factors at time intervals 

of 30, 45, 60, and 60 days. It is demonstrated that the resistance factors increase 

substantially with respect of the ones at SLT time due to the important increase in the 

bias value and the small modification of the COV. This also affects the efficiency bias 

factor by increasing it for the steel-H piles and decreasing it for the concrete piles. These 

reasons indicate that the setup incorporation is meaningful for the calibration of 

resistance factors and produce cost savings when using WBUZPILE and DRIVEN, 

especially, for steel-H Piles.      

9.2 Setup Incorporation for Dynamic Load Testing. 

The pile setup incorporation on the control field test such as Dynamic Load Tests 

(DLT) can also produce substantial cost savings. As stated in chapter 2, pile setup 

represents an increase on the pile capacity over time after the EOID. Larger pile capacity 

can be translated to smaller piles size, depth and number. These three factors represent 

less construction costs to the government and taxpayers. Thus, this section shows the 

incorporation of setup on the calibration of resistance factors for DLT as a prediction 

method. The DLT data consists of 18 resistance values obtained using PDA equipment 

and ICAP® signal matching. In the same way as the previous section, the pile setup is 

incorporated through the use of  Skov and Denver [1] model considering the initial time 
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as the actual time at SLT. In this way, setup resistance values for 30, 45, 60, and 90 days 

after EOID are calculated and added to the SLT. The resistance values are shown in 

Table 26. 

Table 36: Comparation of resistance factors incorporating setup for DLT. 

All data set 

Design method  DLT 

Time 
SLT 
time 

30 
days 

45 
days 

60 
days 

90 
days 

λR 1.600 1.829 1.885 1.925 1.981 

σR 0.563 0.680 0.699 0.713 0.733 

COVR 0.352 0.372 0.371 0.371 0.370 

β = 3.00 

φR 0.70 0.74 0.75 0.78 0.81 

Incr.  0% 6% 7% 11% 16% 

φR/λ 0.44 0.40 0.40 0.41 0.41 

β = 2.50 

φR 0.82 0.90 0.93 0.95 0.98 

Incr.  0% 10% 13% 16% 20% 

φR/λ 0.51 0.49 0.49 0.49 0.49 

β = 2.33 

φR 0.88 0.95 0.97 1.02 1.04 

Incr.  0% 8% 10% 16% 18% 

φR/λ 0.55 0.52 0.51 0.53 0.52 

Average increase  0% 8% 10% 14% 18% 
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Figure 56: Variation of resistance factor with setup incorporation for DLT, 
considering entire data set. 
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Figure 57: Variation of efficiency factor with setup incorporation for DLT, 
considering entire data set. 
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As shown in Table 26, the bias and standard deviation values increase for all the 

reliability index with respect of the ones with the actual SLTs as measured resistance. 

Consequently, it is better to evaluate the effect on the COV individually. The COV values 

for 30, 45, 60, and 90 days are very similar to each other and are slightly larger than the 

COV value at SLT time. 

In regards of the resistance factor variation, Figure 56 shows that resistance 

factors have larger increase with a larger time interval after EOID. This means that the 

bias increase has a larger impact than the small COV increase on the calibrated resistance 

factors. Therefore, it is demonstrated that the setup resistance factors can produce cost 

savings in design and construction of driven piles. 

In regards of the efficiency factor variation, Figure 57 shows that the efficiency 

factor slightly decreases once setup at 30 days in incorporated. Then, this efficiency 

factor remains almost stable for 45, 60, and 90 days. This means that the setup 

incorporation makes DLT slightly less efficient for control field purposes.  

In summary, the Skov and Denver [1] model made possible the evaluation of pile 

setup incorporation effects on calibration of LRFD resistance factors at time intervals of 

30, 45, 60, and 60 days. It is demonstrated that the resistance factors increase 

substantially with respect of the ones at SLT time due to the important increase in the 

bias value and the small increase of the COV. This also affects the efficiency bias factor 

by decreasing it once any time interval setup is incorporated. In other words, the setup 

incorporation makes DLT slightly less efficient. Nonetheless, since the main evaluated 

factor is the resistance factor, it is still fair to conclude that the setup incorporation is 

meaningful for the calibration of resistance factors and produces cost savings when using 

DLT as control field testing methods. Higher resistance factors involve larger usable pile 

capacities, which means smaller piles size, depth and number, hence cost savings. 
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9.3 Summary of Setup incorporation in the calibration of resistance factors. 

The analysis presented in this chapter demonstrates that the setup incorporation in 

the calibration of LRFD resistance factors produces meaningful cost savings. As stated in 

chapter 2, pile setup represents an increase on the pile capacity over time after the EOID. 

Larger pile capacity can be translated to smaller piles size, depth and number. These three 

factors represent less construction costs to the government and taxpayers. The two cases 

evaluated are the static analysis method (WBUZPILE and DRIVEN) and dynamic load 

testing method (PDA with iCAP) as prediction methods. Both calibrations were 

performed considering SLT plus the setup increase modeled by Skov and Denver [1] 

Model at 30, 45, 60, and 90 days as measured resistance. Three data cases are evaluated 

(All piles data set, steel H-Piles data set, and concrete piles data set) for static analysis 

methods evaluation and just one general data case for the DLT analysis. 

Regarding WBUZPILE and DRIVEN, the setup incorporation produces a 

significant increase in the resistance factors for the three data set. The efficiency presents 

an unstable behavior for the all piles set, increases for the steel H-Piles set, and decreases 

for the concrete piles set. Regarding dynamic load testing, the setup incorporation also 

produces a substantial increase of resistance factors. However, its efficiency decreases at 

30 days and remains stable for 45, 60, and 90 days.  
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CHAPTER X  COMPARISON OF RESISTANCE FACTORS WITH AASHTO, 

NCHRP, AND OTHER STATES 

Pile design involves high uncertainty. While LRFD methodology proposes a more 

accurate design, the transition from ASD to LRFD is a slow process and expensive 

process due to the large amount of data required. According to a survey made by 

AbdelSalam et al [51] in 2009, 52% of state DOTs have fully implemented LRFD, 33% 

were in transition from ASD to LRFD, and 15% were still following ASD with FS of 2 

and 2.5. In this chapter, the performance of Alabama prediction methods is evaluated by 

comparing it with bibliography from the federal government and other states according to 

the LFRD calibration performed. The compared bibliography consists of AASHTO and 

NCHRP 507 as federal type and other states such as Florida, Louisiana, Arkansas, Iowa, 

and Illinois. The prediction and construction control methods are evaluated in terms of 

reliability, efficiency, and consistency. In this study, the reliability is measured by the 

resistance factor. A higher resistance factor represents a more reliability method. The 

efficiency is measured by the efficiency factor if available. A higher efficiency factor 

represents a more efficient method. Finally, the consistency is measured by the COV 

value if available. A smaller COV value represents a more consistent method. It should 

be noted that, as seen in this chapter, specific comparisons are difficult due to the 

different cases study considered for each author. The different quality and quantity of 
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data are the main factors to decide which cases can be studied. For instance, while other 

documents consider the soil type factor, this document considers just the type pf pile due 

to the lack of data in specific soil types. Nevertheless, the comparison developed is useful 

to evaluate the performance of the prediction methods used by ALDOT.  

10.1 Comparison of WBUZPILE and DRIVEN resistance factors. 

As mentioned before, WBUZPILE and DRIVEN work as “static analysis 

methods” since can be used as the first methods to estimate the depth of piles. Therefore, 

both methods shall be compared just with other static analysis methods. This section 

compares the calibrated WBUZPILE and DRIVEN resistance factor with the resistance 

factors proposed by AASHTO, NCHRP 507, Florida, Louisiana, Iowa, and Illinois. 

10.1.1 Comparison of WBUZPILE and DRIVEN resistance factors with AASHTO. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors provided by AASHTO [38] specifications. 

AASHTO [37] presents resistance factors for static analysis methods and field 

determination methods. In regard of static analysis methods, AASHTO mainly 

considered the resistance factors calibrated by Paikowsky et al. [6]. However, since 

several resistance factors were calibrated, AASHTO [38] lists the average resistance 

factors for each method. It should be noted that AASHTO lists resistance factors for 

redundant piles. Nonetheless, its commentary suggests using an 80% of the redundant 

resistance factors for non-redundant piles.  

A comparison between the resistance factors for WBUZPILE and DRIVEN 

method and the resistance factors for static analysis proposed by AASHTO [38] is shown 

in Table 37. 
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Table 37: Comparison of WBUZPILE and DRIVEN resistance factors with 
AASHTO specifications. 

State  Alabama AASHTO 

Year  2020  2014 

Pile 
Type 

All Piles 
All 
Piles 

Steel‐H 
Piles 

Steel‐
H 
Piles 

Concrete 
Piles 

Concrete 
Piles 

Side and End 
bearing 
resistance: Clay 
and Mixed Soils 

Side and End 
bearing 
resistance: 
Sand 

General 

Design 
method 

WBUZPILE DRIVEN  WBUZPILE DRIVEN  WBUZPILE DRIVEN  α  β  λ 
Nordlund/ 
Thurman 

SPT 
Schmertmann 
(CPT) 

φ (β = 
2.33) 

0.28  0.22  0.39  0.28 0.23 0.25 0.35 0.25 0.40 0.45  0.30  0.50 

φ (β = 
3.00) 

0.19  0.14  0.26  0.20 0.17 0.17 0.28 0.20 0.32 0.36  0.24  0.40 

In terms of reliability, WBUZPILE and DRIVEN’s resistance factors are almost 

similar with AASHTO’s resistance factors for the α, β, λ and SPT method. Nevertheless, 

WBUZPILE and DRIVEN’s resistance factors are significantly lower than AASHTO’s 

resistance factors from the Nordlund/Thurman and the Schmertmann (CPT) method. 

These results indicate that, in average, WBUZPILE and DRIVEN are not as reliable as 

thee AASHTO static analysis methods.  

In summary, according to the LRFD calibration performed, the WBUZPILE and 

DRIVEN are not, in average, as reliable as the static analysis methods provided by 

AASHTO. It is not possible to compare the efficiency and consistency since no efficiency 

and COV values from AASHTO specifications [37]. However, they can be considered 

implicit in the resistance factors. 
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10.1.2 Comparison of WBUZPILE and DRIVEN resistance factors with NCHRP 

507. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors provided by the report 507 from National 

Cooperative Highway Research Program (NCHRP) [6]. The NCHRP 507 [6] 

specifications is a document developed by Paikowsky et al. in order to address issues and 

to provide resistance factors for the load and resistance factor design of deep foundations. 

In case of driven piles, the database is composed by 338 static analysis case histories and 

210 static and dynamic tested cases. The calibration methodology used is FOSM and 

FORM with 2.33 and 3.0 as reliability indices. All of the suggested resistance factors 

developed with for target reliability values can be found in the Tables 25 – 30 of NCHRP 

507 [6] report. 

Also, NCHRP 507 [6] states that static capacity design common methods tend to 

over-predict the capacity of observed pile capacities. On the other hand, dynamic 

capacity evaluation methods (CAPWAP) usually used for control tend to under-predict 

the observed pile capacities. However, it should be noted that parameters such as 

subsurface variability, site-specific technology, and previous experience, as well as 

amount and type of testing during construction, were bypassed for this study.   

In addition, NCHRP 507 [6] found that the influence of the applied static load rate 

in the static pile tests has almost a null influence of the static pile capacity. Therefore, the 

Davisson’s pile failure criterion can be used to determine the reference line for the 

capacity of driven piles, irrespective of the load-rate procedure. Furthermore, the research 

mentions that static or dynamic test (restrikes) should be performed no sooner than before 

the 75% of the pile capacity has been reached. 

Several resistance factors were calibrated by Paikowsky et al. [6] in NCHRP 507. 

However, Table 38 and 39 shows the comparison of the resistance factors from Alabama 

with the resistance factors calibrated using FORM and dead-to-live load ratio of 2. Table 

38 shows the comparison for the steel-H piles case and Table 39 shows the comparison 

for concrete piles case. 
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Table 38: Comparison of the resistance factors from WBUZPILE and 
DRIVEN with the resistance factors from NCHRP 507 (steel H-piles). 

State Alabama (2020) NCHRP 507 (2004) 

Case w/o 
Pile Type 

All Piles  Steel‐H Piles 
Steel‐H Piles (Mixed 
Soils) 

Design 
method 

WBUZPILE DRIVEN WBUZPILE DRIVEN 
α‐API/ 
Norlund/ 
Thurmand 

αTomlinson/ 
Norlund/ 
Thurman 

Data set 
size 

53 53 36 36 34 20 

λR 0.979 1.049 1.175 1.230 0.790 0.590 

COVR 0.646 0.62 0.563 0.721 0.440  0.390 

φ  β = 
2.33 

0.28 0.22 0.39 0.28 0.35 0.30 

φR/λR 0.29 0.21 0.33 0.23 0.44  0.51 

φ  β = 
3.00 

0.19 0.14 0.26 0.20 0.25 0.25 

φR/λR 0.19 0.13 0.22 0.16* 0.32  0.42 

Table 39: Comparison of the resistance factors from WBUZPILE and 
DRIVEN with the resistance factors from NCHRP 507 (concrete piles). 

State  Alabama (2020) NCHRP 507 

Case w/o 
Pile Type 

All Piles  Concrete Piles 
Concrete Pile (Mixed 
soils) 

Design 
method 

WBUZPILE DRIVEN WBUZPILE DRIVEN 
β‐
method/ 
Thurman 

αTomlinson/ 
Norlund/ 
Thurman 

Data set 
size 

53 53 17 17 80 33 

λR 0.979 1.049 0.564 0.664 0.810 0.960 

COVR 0.646 0.762 0.486 0.527 0.380 0.490 

φR β = 
2.33 

0.28 0.22 0.23 0.25 0.40 0.40 

φR/λR 0.29 0.21 0.41 0.44 0.49 0.42 

φR β = 
3.00 

0.19 0.14 0.17 0.17 0.30 0.30 

φR/λR 0.19 0.13 0.30 0.26 0.37 0.31 
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In terms of reliability, WBUZPILE and DRIVEN show generally lower reliability 

than NCHRP’s static analysis methods. Regarding concrete piles, WBUZPILE and 

DRIVEN show lower resistance factors than NCHRP. Regarding steel H-Piles, 

WBUZPILE shows slightly higher resistance factors than NCHRP, but DRIVEN shows 

slightly lower resistance factors than NCHRP. Regarding all piles case, WBUZPILE and 

DRIVEN show lower resistance factors. These results indicate that, in average, 

WBUZPILE and DRIVEN as not as reliable as NCHRP’s static analysis methods, with 

the exception of WBUZPILE applied to steel H-piles. 

In terms of efficiency, WBUZPILE and DRIVEN show lower efficiency than 

NCHRP’s static analysis methods. WBUZPILE and DRIVEN show lower efficiency 

factors than NCHRP regarding all piles data set, steel H-Piles data set, and concrete piles 

data set. There results indicate that WBUZPILE and DRIVEN are not as efficient as 

NCHRP’s static analysis methods. 

In terms of consistency, WBUZPILE and DRIVEN show lower consistency than 

NCHRP static analysis methods. WBUZPILE and DRIVEN show larger COV values 

than NCHRP regarding all piles data set, steel H-Piles data set, and concrete piles data 

set. There results indicate that WBUZPILE and DRIVEN are not as consistent as 

NCHRP’s static analysis methods. 

In summary, according to the LRFD calibration performed, WBUZPILE is 

generally not as reliable, efficient, and consistent as NCHRP’s static analysis methods, 

with the exception of the steel-H Piles case, where WBUZPILE reveals more reliability 

than NCHRP 507. DRIVEN is not as reliable, efficient, and consistent as NCHRP static 

analysis methods for the three data sets. 

10.1.3 Comparison of WBUZPILE and DRIVEN resistance factors with the state of 

Florida. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors used by the state of Florida. The state of Florida is 
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still on transition from ASD to LRFD. The section 1810 Deep Foundation of the sixth 

edition of Florida Building Code [53] just states that Driven piles shall be designed and 

manufactured in accordance with accepted engineering practice to resist all stresses 

induced by handling, driving and service loads. In other words, it still follows an ASD 

design methodology for driven piles. Nonetheless, researchers such as Styler [7] explored 

the incorporation of LRFD for piles driven in Florida Soils.  

Styler [7] developed LRFD resistance factors using the Data Interchange for 

Geotechnical and Geoenvironmental Specialists (DIGGS) and following a FOSM and 

FORM calibration methodology. DIGGS consists of a new developed standard for 

digitally storing data tool. Prior to the calibration, the piles are also evaluated using the 

Bridge Software Institute’s FB-Deep program. This software estimates the total pile 

capacity based on the full skin friction and one third of the end-bearing resistance. Both 

are calculated using blow counts and soil types provided by SPT boring logs. The 

calibration is performed by FORM and FOSM. A total number of 62 prestressed concrete 

piles from the state of Florida are considered for this study. The target reliability index βT 

considered are 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, and 5; and dead-to-live load ratios of 2, 

2.5, and 3. 

The results found by Styler [7] match the final statements made by Paikowsky et 

al [6]. The resistance factors calibrated by FORM are 8% to 23% greater than the ones 

calibrated by FOSM. Once the results are delivered, this project implements a modified 

FOSM method which agrees with the FORM results. Table 40 show the calibrated 

resistance factor from Alabama compared to the resistance factors from Florida by Styler 

[7]. 
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Table 40: Comparison of the resistance factors from WBUZPILE and 
DRIVEN with the resistance factors from the state of Florida. 

State Alabama (2020)  Florida (2006) 

Case w/o Pile Type  All Piles  Concrete Piles  Concrete Piles 

Design method WBUZPILE DRIVEN  WBUZPILE DRIVEN FB‐Deep (SPT) 

Number of Piles  53 53 17 17 63 63 63 

λR 0.979 1.049 0.564 0.664 1.516 1.516 1.516 

COVR 0.646 0.762 0.486 0.527 0.472  0.472  0.472 

φR 
β = 2.25 

‐‐‐‐ ‐‐‐‐ ‐‐‐‐ ‐‐‐‐ 0.61 0.68 0.68 

φR/λR ‐‐‐‐ ‐‐‐‐ ‐‐‐‐ ‐‐‐‐ 0.41  0.45  0.45 

φR 
β = 2.33 

0.28 0.22 0.23 0.25 ‐‐‐‐ ‐‐‐‐ ‐‐‐‐

φR/λR 0.29 0.21 0.41 0.38 ‐‐‐‐ ‐‐‐‐ ‐‐‐‐

φR 
β = 3.00 

0.19 0.14 0.17 0.17 0.42 0.48 0.48 

φR/λR 0.19 0.13 0.30 0.26 0.28  0.32  0.32 

In terms of reliability, WBUZPILE and DRIVEN show significant lower 

reliability than Florida’s static analysis methods. Regarding redundant piles (β = 2.33 for 

Alabama’s method and β = 2.25 for Florida’s method), the highest resistance factors from 

WBUZPILE (0.28) and DRIVEN (0.23) are 59% and 66% lower than the FORM 

resistance factor from FB-Deep method (0.68), respectively. Regarding non-redundant 

piles, the highest resistance factors from WBUZPILE (0.19) and DRIVEN (0.17) are 

60% and 65% lower than the FORM resistance factor from FB-Deep method (0.48), 

respectively. These results indicate that WBUZPILE and DRIVEN are not as reliable as 

the static analysis methods provided in Florida.  

In terms of efficiency, WBUZPILE and DRIVEN show lower efficiency than 

Florida’s static analysis methods. Regarding redundant piles (β = 2.33 for Alabama’s 

method and β = 2.25 for Florida’s method), the highest efficiency factors from 

WBUZPILE (0.41) and DRIVEN (0.38) are 9% and 16% lower than the FORM 

efficiency factor from FB-Deep method (0.45), respectively. Regarding non-redundant 
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piles, the highest efficiency factors from WBUZPILE (0.30) and DRIVEN (0.26) are 6% 

and 23% lower than the FORM efficiency factor from FB-Deep method (0.32), 

respectively. These results indicate that WBUZPILE and DRIVEN are not as efficient as 

the static analysis methods provided in Florida. 

In terms of consistency, WBUZPILE and DRIVEN show lower consistency than 

Florida’s static analysis methods. WBUZPILE shows its best consistency with the 

concrete piles. However, its COV value is 3% larger than FB-Deep’s COV. The case of 

DRIVEN shows its best consistency also with concrete piles. Nevertheless, its COV 

value is 12% larger than FB-Deep’s COV. These results indicate that WBUZPILE and 

DRIVEN are not as consistent as Florida’s static analysis methods.  

In summary, according to the LRFD calibration performed, WBUZPILE and 

DRIVEN are not as reliable, efficient, and consistent as Florida’s static analysis method. 

10.1.4 Comparison of WBUZPILE and DRIVEN resistance factors with the state of 

Louisiana. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors used by the state of Louisiana. The state of 

Louisiana is also on transition from ASD to LRFD. The section 1810 Deep Foundation of 

the 2015 Louisiana Building Code [54] just states that Driven piles shall be designed and 

manufactured in accordance with accepted engineering practice to resist all stresses 

induced by handling, driving and service loads. In other words, it still follows an ASD 

design methodology for driven piles. Nonetheless, researchers such as Abu-Farsakh [55] 

explored the incorporation of LRFD for piles driven in Louisiana Soils. 

Abu-Farsakh [54] calibrated the resistance factors for driven piles using a 53 piles 

database using MCS and a dead-to-live ratio of 2. The design methods evaluated were the 

static method (α-method and Norlund method), three direct cone penetration test (CPT) 

design methods (Schmertmann methods, De Ruiter and Beringen method, and 

Bustamante and Gianseselli (LCPC) method), and the Case Pile Wave Analysis Program 

(CAPWAP) method. The calibration was performed following FOSM, FORM, and MCS 
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methodology with a target reliability index of 2.33. Abu-Farsakh [55] concludes that the 

De Ruiter method shows the highest resistance factor (φR = 0.73), while the 

Schmertmann method presents the lowest resistance factor (φR = 0.49),which is even 

lower than the AASHTO suggested resistance factor of 0.50.  

The predominant soil type in Louisiana is silty clay. Thus, CPT design methods 

are popular. Nonetheless, CPT methods are not as popular in Alabama due to their 

inability to go through stiff soil layers. While the north portion of Alabama has shallow 

bedrock layers, the south portion shows deeper bedrock layers. It is clear that this factor 

limits the application of CPT methods in Alabama soils. However, the comparison is still 

developed because if specific cases of low to medium depth piles where the pile toe does 

not reach the bedrock are considered, the CPT methods can be used in Alabama soils. 

The two calibrations from Louisiana with the highest resistance factors are compared to 

the Alabama’s resistance factors in Table 41.  

Table 41: Comparison of the resistance factors from WBUZPILE and 
DRIVEN with the resistance factors from the state of Louisiana. 

State  Alabama (2020)  Louisiana (2009) 

Case w/o 
Pile Type 

All Piles  Steel‐H Piles  Concrete Piles  All Piles 

Design 
method 

WBUZPILE DRIVEN WBUZPILE DRIVEN WBUZPILE DRIVEN 

De 
Ruiter‐
Beringen 
method 

Schmertmann 
method 

Number of 
Piles 

53  53  36  36  17  17  53  53  

φ (β = 2.33) 0.28 0.22 0.39 0.28 0.23 0.25 0.73 0.49 

In terms of reliability, WBUZPILE and DRIVEN show significant lower 

reliability than Louisiana’s static analysis methods. Regarding redundant piles and if the 

highest resistance factors are considered, WBUZPILE and DRIVEN show 46% and 62% 

lower resistance factors than the De Ruiter-Beringen method (Louisiana), respectively. It 

is not possible to compare non-redundant resistance factors because they were not 
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available for the author. Nonetheless, it is still possible to conclude that WBUZPILE and 

DRIVEN are not as reliable as Louisiana’s static analysis methods. 

In summary, according to the LRFD calibration performed, WBUZPILE and 

DRIVEN are not as reliable as Louisiana’s static analysis method. No quantitative 

comparison of the efficiency and consistency is possible due to the unavailability of data 

in Abu-Farsakh [54] . However, both can be considered implicit in the reliability 

comparison. Also, it should be noted that this specific comparison is the one that present 

the largest difference between resistance factors for static analysis methods. 

10.1.5 Comparison of WBUZPILE and DRIVEN resistance factors with the state of 

Iowa. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors used by the state of Iowa. The state of Iowa has 

already transitioned from ASD to LRFD. The Iowa DOT LRFD Bridge Design Manual 

[55] states that the pile section and contract length shall be determined by the load and 

resistance factor design (LRFD) method. Iowa DOT proposes resistance factors just for 

redundant piles considering different combinations for construction methods originally 

calibrated by AbdelSalam et al [22].  

Firstly, the Iowa DOT LRFD Bridge Design Manual [56] lists resistance factors 

just for the Iowa Blue Book method as a static analysis method if the Iowa Dot ENR 

formula is used as driving criterion. In this way, the manual considers different resistance 

factors for cohesive, mixed, and non-cohesive soils. 

Secondly, AbdelSalam et al [22] performed the LRFD calibration for driven piles 

considering Static Analysis Methods, Dynamic Analysis Methods, and Dynamic 

Formulas. For the case of the static analysis methods, AbdelSalam et al [22] used 25 tests 

for clay, 36 tests for sand, and 29 tests for mixed soils. The calibration was performed 

following lognormal data distribution and FOSM reliability approach. 

In regards of static analysis methods, AbdelSalam et al [22] considered five 

methods: SPT-Meyerhof method, α-API, β-method, Nordlund method, and Blue Book 

method. They conclude that for redundant pile groups, the Blue Book method shows the 
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highest resistance factor for sand soils. The Blue Book method also shows the highest 

resistance factors for clay soils. In case of mixed soils, the SPT-Meyerhof has the highest 

resistance factors followed by the Blue Book method in second. For redundant piles, the 

resistance factors were reduced in 30%. Finally, AbdelSalam et al [22] recommends 

using the Iowa Blue Book method for all pile design due to its high efficiency and 

popularity in the state of Iowa. 

A comparison between the resistance factors for WBUZPILE and DRIVEN 

method and the resistance factors for static analysis methods evaluated by Iowa DOT 

[56] is shown in Table 42. The case of mixed soils is considered because it is the most 

similar to Alabama’s case. 

Table 42: Comparison of the resistance factors WBUZPILE and DRIVEN 
with the resistance factors from the state of Iowa. 

State  Alabama (2020) Iowa (2012) 

Case w/o 
Pile Type 

All Piles  Steel‐H Piles  Concrete Piles 

All Piles in 
cohesive 
and 
mixed 
soils 

All Piles in 
non‐
cohesive 
soils 

Design 
method 

WBUZPILE DRIVEN WBUZPILE DRIVEN WBUZPILE DRIVEN Blue Book Blue Book 

φR 
(β = 
2.33) 

0.28 0.22 0.39 0.28 0.23 0.25 0.60 0.50 

In terms of reliability, WBUZPILE and DRIVEN show significantly lower 

reliability than the static analysis method listed by Iowa DOT. Regarding redundant piles, 

WBUZPILE and DRIVEN present lower resistance factors than the both cases of the 

Blue Book method provided by Iowa DOT. It is not possible to compare non-redundant 

piles since no non-redundant resistance factors are listed in Iowa DOT bridge manual 

[56]. 

In summary, according to the LRFD calibration performed, WBUZPILE and 

DRIVEN are not as reliable as Iowa’s static analysis method provided by Iowa DOT 
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[55]. No quantitative comparison of the efficiency and consistency is possible due to the 

unavailability of data in Iowa DOT Bridge Design Manual [55]. However, both can be 

considered implicit in the reliability comparison. 

10.1.6 Comparison of WBUZPILE and DRIVEN resistance factors with the state of 

Illinois. 

This section attempts to compare the resistance factors from WBUZPILE and 

DRIVEN with the resistance factors used by the state of Illinois. The state of Illinois is 

still on transition from ASD to LRFD. The section 1810 Deep Foundations of the 

Building Code 2018 of Illinois [56] just states that Driven piles shall be designed and 

manufactured in accordance with accepted engineering practice to resist all stresses 

induced by handling, driving and service loads. In other words, it still follows an ASD 

design methodology for driven piles. Nonetheless, researchers such as Long et al. [58] 

explored the incorporation of LRFD for piles driven in Illinois Soils.  

Long et al. [58] performed a LRFD Calibration of resistance factor for driven 

piles considering Static Analysis methods and Dynamic Analysis methods. For the case 

of the static analysis methods, Long et al. [58] used a collection of 26 load tests. The 

calibration was performed following lognormal data distribution and FORM reliability 

approach. 

In regards of static analysis methods, Long et al. [58] considered five methods: 

The IDOT static (S-IDOT) method, the Kinematic IDOT (K‐IDOT) method, the Imperial 

College Pile method, the Olson’s method, and DRIVEN. The S-IDOT method uses SPT 

N-Values and undrained shear strength (if applicable) to determine the pile capacity. The 

K-IDOT method additionally considers whether the pile is plugged or unplugged. 

Basically, the piles are considered unplugged if the tip capacity is greater than the side 

capacity. On the other hand, if a H-Pile is found to be plugged, then it is considered a 

solid rectangular prism.  

They conclude that the K-IDOT method is the one that better reflects the physical 

reality of a driven pile. It has the highest resistance and efficiency factors. In addition, it 

shows the best agreements with the dynamic formulae methods. A comparison of the 
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resistance factors from WBUZPILE and DRIVEN, and the FORM resistance factors for 

IDOT static analysis methods calibrated by Long et al. [58] is shown in Table 43. The 

dead-to-live load ratio considered by Illinois is 2 as considered in this study.  

Table 43: Comparison of the resistance factors from WBUZPILE and 
DRIVEN with the resistance factors from the state of Illinois. 

State  Alabama (2020)  Illinois (2009) 

Case w/o 
Pile Type 

All Piles  Steel‐H Piles Concrete Piles H‐Piles 

Design 
method 

WBUZPILE DRIVEN WBUZPILE DRIVEN WBUZPILE DRIVEN S‐IDOT 
Corrected 
S‐IDOT 

Corrected 
K‐IDOT 

Number of 
Piles 

53  53  36 36 17 17 26  26 26 

λR 0.979  1.049  1.175 1.230 0.564 0.664 1.110  0.970 1.090 

COVR 0.646  0.762  0.563 0.721 0.486 0.527 0.666  0.650 0.525 

φR (β = 
2.33) 

0.28  0.22  0.39 0.28 0.23 0.25 0.29  0.26 0.40 

φR/λR 0.29  0.21  0.33 0.23 0.41 0.38 0.26  0.27 0.37 

φR (β = 
3.00) 

0.19  0.14  0.26 0.20 0.11 0.17 0.19  0.18 0.28 

φR/λR 0.19  0.13  0.22 0.16* 0.30 0.26 0.17  0.19 0.26 

In terms of reliability, WBUZPILE and DRIVEN show almost similar reliability 

to the static analysis methods from Illinois. It should be noted that the most reliable 

method provided by Illinois is the corrected K-IDOT method. In this way, regarding 

redundant piles and considering the highest resistance factors, WBUZPILE and DRIVEN 

shows 3% and 30% lower resistance factors than the corrected K-IDOT method, 

respectively. Regarding non-redundant piles and considering the highest resistance 

factors, WBUZPILE and DRIVEN shows 7% and 29% lower resistance factors than the 

corrected K-IDOT method, respectively. These results indicate that WBUZPILE and 

DRIVEN are as reliable as Iowa’s static analysis methods. 

In terms of efficiency, WBUZPILE and DRIVEN show almost similar efficiency 

to the static analysis methods from Illinois. It should be noted that the most efficient 

method provided by Iowa is the corrected K-IDOT method. In this way, regarding 
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redundant piles and considering the highest efficient factors, WBUZPILE shows 11% 

higher and DRIVEN shows 3% higher efficient factors than the corrected K-IDOT 

method.  Regarding non-redundant piles and considering the highest efficient factors, 

WBUZPILE shows 15% higher and DRIVEN shows equal efficient factors than the 

corrected K-IDOT method. These results indicate that WBUZPILE and DRIVEN are 

slightly more efficient than Iowa’s static analysis methods. 

In terms of consistency, WBUZPILE and DRIVEN show almost similar 

consistency to static analysis methods used in Illinois. The average of the COV values 

from WBUZPILE (0.563) is just 8% smaller than the average COV values from Illinois’ 

method (0.614). The average of the COV values from DRIVEN (0.667) is just 9% larger 

than the average COV values from Illinois’ method (0.614). These results indicate that 

WBUZPILE are as consistent as the static analysis methods considered by Illinois. 

In terms of consistency, WBUZPILE and DRIVEN show almost similar 

consistency to the static analysis methods from Illinois. It should be noted that the most 

consistency method provided by Iowa is the corrected K-IDOT method. In this way, if 

the most consistent cases are considered, WBUZPILE reveals a COV 7% lower and 

DRIVEN reveals a COV 0.2% larger than K-IDOT COV. These results indicate that 

WBUZPILE and DRIVEN are as consistent as Illinois’s static analysis methods. 

10.2 Comparison of Alabama Dynamic Load Testing resistance factors. 

As previously mentioned, Dynamic Load Testing can be used as control field 

testing methods since they complement the static analysis methods. This section 

compares the calibrated DLT resistance factors with the resistance factors proposed by 

AASHTO, NCHRP 507, and specifications from other states. 
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10.2.1 Comparison of Alabama DLT resistance factors with AASHTO. 

This section attempts to compare the resistance factors from Dynamic Load 

Testing in Alabama with the resistance factors provided by AASHTO [37] specifications. 

As stated before, AASHTO [37] presents resistance factors for static analysis methods 

and control construction methods. The resistance factor listed are mainly from Paikowsky 

et al. [6]. In regards of dynamic control construction methods, AASHTO [37] considers 

combinations between the prediction method and the number of tests performed. Table 

44 compares Alabama’s DLT resistance factors with the most similar cases from 

AASHTO [37]. It should be noted that AASHTO lists resistance factors for redundant 

piles. Nonetheless, its commentary suggests using an 80% of the redundant resistance 

factors for non-redundant piles. 

Table 44: Comparison of the resistance factors from Alabama DLT with 
AASHTO specifications. 

State 
Alabama 
(2020) 

AASHTO (2014) 

Pile Type  All Piles 

Driving Criteria 
established by dynamic 
testing conducted on 
100% of production piles 

Driving Criteria 
established by dynamic 
testing, quality control by 
dynamic testing of at least 
two piles per site 
condition, but not less 
than 2% of the production 
piles 

Design method 
DLT 
(iCAP) 

DLT with signal matching DLT with signal matching 

φR (β = 2.33) 0.88 0.75 0.65 

φR (β = 3.00) 0.70 0.60 0.52 

Table 44 shows that Alabama’s DLT resistance factors are higher than the ones 

provided by AASHTO. In case of redundant and non-redundant piles piles, Alabama 

DLT’s resistance factors are 17% larger than AASHTO DLT’s resistance factors when 

conducted for 100% of the production piles, and 35% larger than AASHTO DLT’s 
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resistance factors when conducted for 2% of the production piles. These larger factors 

indicate that the DLT is more reliable in Alabama Soils than when conducted in the soils 

evaluated by AASHTO [38]. 

In summary, it is found that Alabama’s DLT have higher resistance factors than 

AASHTO’s resistance factors. This fact indicates that DLT is more reliable when 

conducted in Alabama Soils than when conducted in the soils evaluated by AASHTO 

[38]. 

10.2.2 Comparison of Alabama DLT resistance factors with NCHRP 507. 

This section attempts to compare the resistance factors from Dynamic Load 

Testing in Alabama with the resistance factors provided by the report 507 from National 

Cooperative Highway Research Program (NCHRP) [6]. The NCHRP 507 [6] 

specifications is a document developed by Paikowsky et al. in order to address issues and 

to provide resistance factors for the load and resistance factor design of deep foundations. 

In case of driven piles, the database is composed by 338 static analysis cases histories and 

210 static and dynamic tested cases. The calibration methodology used is FOSM and 

FORM with 2.33 and 3.0 as reliability indices. All of the suggested resistance factors 

developed with both target reliability values can be found in the Tables 25 – 30 of his 

report. 

Regarding control construction methods, Paikowsky et al. [6] studied Dynamic 

measurements, Dynamic Equations, and WEAP. Firstly, Dynamic Measurements include 

signal matching using CAPWAP and Energy Approach. Second, Dynamic Equations 

involve ENR, Gates, and FHWA modified method. Finally, WEAP is applied just to 

EOID. Table 45 shows the comparison between the resistance factors for Alabama’s DLT 

and Dynamic Measurements and WEAP. 
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Table 45: Comparison of the resistance factors from Alabama DLT with the 
resistance factors from NCHRP 507. 

State 
Alabama 
(2020) 

NCHRP 507 (2004) 

Pile Type / Case All Piles  EOID BOR EOID BOR EOID 

Design method 
DLT 
(iCAP) 

CAPWAP CAPWAP 
Energy 
Approach 

Energy 
Approach 

WEAP 

φR 
β = 2.33 

0.88 0.65 0.65 0.55 0.40 0.40 

φR/λR 0.55 0.40 0.56 0.49 0.52  0.24 

φR 
β = 3.00 

0.70 0.45 0.50 0.40 0.30 0.25 

φR/λR 0.44 0.28 0.44 0.37 0.41  0.15 

As shown in table 45, Alabama DLT’s resistance factors are significantly higher 

than the ones provided by NCHRP 507 [6]. While the highest resistance factors from 

NCHRP 507 [6] are from The CAPWAP signal matching method for EOID and BOR, 

the resistance factors from Alabama’s DLT are even higher. In case of redundant piles, 

Alabama’s DLT shows a 31% higher resistance factor than NCHRP CAPWAP for both 

EOID and BOR. In case of non-redundant piles, Alabama’s DLT shows a 56% and 40% 

higher resistance factor than NCHRP CAPWAP for EOID and BOR, respectively. 

In terms of efficiency, Alabama DLT’s efficiency factor is generally higher than 

the NCHRP’s resistance factors, with the exception of the CAPWAP applied to BOR 

methods, which shows the highest efficiency factor from NCHRP 507 [6]. In this specific 

case, Alabama’s DLT shows almost similar efficiency factors to NCHRP 507 [6]. 

In summary, according to the data provided by ALDOT and the analysis 

performed, the calibrated resistance factors from Alabama’s DLT are significantly larger 

than the ones from NCHRP 507 for redundant and non-redundant piles. In regards of 

efficiency, Alabama’s DLT present similar efficiency to the NCHRP methods.   
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10.2.3 Comparison of the resistance factors from Alabama DLT with the state of 

Arkansas. 

This section attempts to compare the resistance factors from Dynamic Load 

Testing in Alabama with the resistance factors used by the state of Arkansas. As stated 

before, the state of Arkansas is still on transition from ASD to LRFD. The section 1810 

Deep Foundations of the Arkansas Fire Prevention Code Vol II Building [58] just states 

that Driven piles shall be designed and manufactured in accordance with accepted 

engineering practice to resist all stresses induced by handling, driving and service loads. 

In other words, it still follows an ASD design methodology for driven piles. Nonetheless, 

researchers such as Bostwick [40] explored the incorporation of LRFD for piles driven in 

Arkansas Soils for construction control methods. 

Bostwick [40] performed different LRFD resistance factor calibrations through 

MCS using a 123 piles database size. The data is composed by SLT and DLT using 

CAPWAP as signal matching method. Bostwick [38] states that, on average, DLT value 

represent 60% of the SLT values. In other words, DLR tend to underpredict the pile 

capacity compared to SLT. 11 cases are studied, but just 7 show calibrated resistance 

factors including a Paikowsky et al [6]. database case, where 59 piles of their data were 

used to calibrated resistance factors. A comparison between the resistance factors for 

Alabama DLT method and the resistance factor for dynamic methods evaluated by 

Bostwick [40] is shown in Table 46. 
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Table 46: Comparison of the resistance factors from Alabama DLT with the 
resistance factors from the state of Arkansas. 

State 
Alabama 
(2020) 

Arkansas (2014) 

Case w/o Pile 
Type 

All Piles 
All Piles 
EOID 

H‐Piles in 
Clay EOID 

H‐Piles in 
Sand 
EOID 

PPC Piles 
in Clay 
EOID 

PPC Piles 
in Sand 
EOID 

All Piles 
BOR 

Paikowsky 
Piles EOID 

Design method  DLT (iCAP) 
DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

DLT 
(CAPWAP) 

Number of 
Piles 

18  123 18 32 28 20  37  59 

λR 1.600  1.590 1.280 1.130 2.910 1.860  1.100  1.920 

COVR 0.352  0.630 0.550 0.400 0.820 1.130  0.320  0.590 

φR (β = 
2.33) 

0.88  0.45 0.44 0.54 0.55 0.56  0.63  0.59 

φR/λR 0.55  0.28 0.34 0.48 0.19 0.30  0.57  0.31 

φR  (β = 
3.00) 

0.70  0.31 0.31 0.42 0.34 0.38  0.51  0.41 

φR/λR 0.44  0.19 0.24 0.37 0.12 0.20  0.46  0.21 

In terms of reliability, Alabama DLT’s resistance factors are significantly higher 

than the resistance factors provided by Bostwick [41]. The highest resistance factors from 

Bostwick [38] are the ones for the DLT (CAPWAP) method for all piles BOR. However, 

in case of redundant piles, Alabama DLT’s resistance factor is 40% higher than All Piles 

BOR method’s (Arkansas) resistance factor. In case of non-redundant 37% higher than 

All Piles BOR method’s (Arkansas) resistance factor. This indicate that Alabama DLT is 

more reliable than the method evaluated by Bostwick [41] for Arkansas’ soils. 

In terms of efficiency, Alabama DLT’s efficiency factors are slightly lower than 

the most efficient method evaluated in the state of Arkansas, which is the All Piles BOR 

method evaluated by Bostwick [41]. In case of redundant piles, Alabama DLT’s 

efficiency factor is 3.5% lower than All Piles BOR method’s efficiency factor. In case of 

non-redundant piles, Alabama DLT’s efficiency factor is 5% lower than All Piles BOR 

method’s efficiency factor. This indicate that Alabama DLT is slightly less efficient than 

the All Piles BOR method, which is most efficient method evaluated by Bostwick [41] 

for Arkansas’ soils. 
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In terms of consistency, Alabama DLT is slightly more consistent than the most 

consistent method evaluated in the state of Arkansas, which is the All Piles BOR method 

evaluated by Bostwick [41]. Alabama DLT’s COV is 10% larger than the All Piles BOR 

method’s COV.  

In summary, according to the LRFD calibration performed, the Alabama DLT 

method is generally more reliable, efficient, and consistent than the control construction 

methods evaluated by Bostwick [41] for Arkansas soils, with exception of the All Piles 

BOR method. The Alabama DLT method is more reliable, but less efficient and 

consistent than the All Piles BOR method.  

10.2.4 Comparison of Alabama DLT resistance factors with the state of Iowa. 

This section attempts to compare the resistance factors from Dynamic Load 

testing with the resistance factors used by the state of Iowa. As mentioned before, the 

state of Iowa has already transitioned from ASD to LRFD. The Iowa DOT LRFD Bridge 

Design Manual [56] states that the pile section and contract length shall be determined by 

the load and resistance factor design (LRFD) method. Iowa DOT proposes resistance 

factors just for redundant piles considering different combinations for construction 

methods originally calibrated by AbdelSalam et al [22]. In this section, the DLT 

resistance factors are compared the Iowa construction control resistance factors listed in 

Iowa DOT LRFD Bridge Design Manual and AbdelSalam et al [22] paper. 

A comparison between the resistance factors for Alabama DLT method and the 

resistance factor for dynamic methods evaluated by Iowa DOT and AbdelSalam et al [22] 

is shown in Table 47. The case of mixed soils is considered because it is the most similar 

to Alabama’s case. 
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Table 47: Comparison of the resistance factors from Alabama DLT with the 
resistance factors from the state of Iowa. 

State Alabama (2020)  Iowa 

Case w/o Pile 
Type 

All Piles  All Piles in cohesive and mixed soils 

Design method  DLT (iCAP) 

WEAP 
only 
(Blue 
Book 
based) 

WEAP and 
PDA/CAPWAP 
(Blue Book 
based) 

WEAP, 
PDA/CAPWAP, 
Planned Retap 
Test 3‐days 
after EOID 
(Blue Book 
based) 

φR (β = 2.33) 0.88 0.65 0.70 0.70 

In terms of reliability, Alabama DLT’s resistance factors are significantly higher 

than the resistance factors provided Iowa DOT [56]. The highest resistance factors from 

Iowa DOT [55] are the ones for the WEAP and PDA/CAPWAP (Blue Book based) 

method and WEAP, PDA/CAPWAP, Planned Retap Test 3-days after EOID (Blue Book 

based) method. In case of redundant piles, the Alabama DLT’s resistance factor is 26% 

higher than the resistance factors for both Iowa methods previously mentioned. This 

indicate that Alabama DLT is more reliable than the methods evaluated by Iowa DOT.   

In summary, according to the LRFD calibration performed, the Alabama DLT 

method is generally more reliable than the three control construction methods provided 

by Iowa DOT. It is not possible compare the efficiency and consistency since no 

efficiency and COV values from Iowa DOT Bridge Design Manual [55] are available. 

However, they can be considered implicit in the resistance factors. 

10.2.5 Comparison of Alabama DLT resistance factors with the state of Illinois. 

This section attempts to compare the resistance factors from Dynamic Load 

testing with the resistance factors used by the state of Illinois. As stated before, the state 
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of Illinois is still on transition from ASD to LRFD. The section 1810 Deep Foundations 

of the Building Code 2018 of Illinois [57] just states that Driven piles shall be designed 

and manufactured in accordance with accepted engineering practice to resist all stresses 

induced by handling, driving and service loads. In other words, it still follows an ASD 

design methodology for driven piles. Nonetheless, researchers such as Long et al [57] 

explored the incorporation of LRFD for piles driven in Illinois Soils for construction 

control methods. This section attempts to compare the resistance factor from Alabama 

DLT with the resistance factors calibrated by Long et al. [58]. Table # shows a 

comparison between the preliminary resistance factors from Alabama and the resistance 

factors from Illinois using FORM and a dead-to-live ratio of 2 

A comparison between the resistance factors for Alabama DLT method and the 

resistance factor for dynamic methods evaluated by Long et al. [58] is shown in Table 48.  

Table 48: Comparison of the resistance factors from Alabama DLT with the 
resistance factors from the state of Illinois. 

State 
Alabama 
(2020) 

Illinois (2009) 

Case w/o Pile 
Type 

All Piles  H Piles and Pipe Piles 

Design method  DLT (iCAP) 
FHWA‐
Gates 

FHWA‐
UI 

WS‐DOT 

Number of Piles  18 132 132 132 

λR 1.600 1.020 1.150 1.050 

COVR 0.352 0.485 0.405 0.451 

φR 
(β = 2.33) 

0.88 0.47 0.61 0.47 

φR/λR 0.55 0.46 0.53 0.45 

φR 
(β = 3.00) 

0.70 0.30 0.42 0.34 

φR/λR 0.44 0.29 0.37 0.32 

In terms of reliability, Alabama DLT’s resistance factors are significantly higher 

than the resistance factors provided by Long et al. [58]. The highest resistance factors 

from Long et al. [58] are the ones FHWA-UI method. However, in case of redundant 
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piles, Alabama DLT’s resistance factor is 44% higher than FHWA-UI method’s 

resistance factor. In case of non-redundant piles, Alabama DLT’s resistance factor is 67% 

higher than FHWA-UI method’s resistance factor. This indicate that Alabama DLT is 

more reliable than the methods evaluated by Long et al. [58] for Illinois’ soils. 

In terms of efficiency, Alabama DLT’s efficiency factors are slightly larger than 

the most efficient method evaluated in the state of Arkansas, which is the FHWA-UI 

method evaluated by Long et al. [58]. In case of redundant piles, Alabama DLT’s 

efficiency factor is 3.8% lower than FHWA-UI method’s efficiency factor. In case of 

non-redundant piles, Alabama DLT’s efficiency factor is 19% larger than FHWA-UI 

method’s efficiency factor. This indicate that Alabama DLT is slightly less efficient than 

the FHWA-UI method, which is most efficient method evaluated by Long et al [57] for 

Illinois’ soils. 

In terms of consistency, Alabama DLT is slightly more consistent than the most 

consistent method evaluated in the state of Illinois, which is the FHWA-UI method 

evaluated by Long et al. [58]. Alabama DLT’s COV is 13% lower than the FHWA-UI 

method’s COV.  

In summary, according to the LRFD calibration performed, the Alabama DLT 

method is more reliable, efficient, and consistent than the control construction methods 

evaluated by Long et al. [58] for Illinois’ soils. Even the most reliable, efficient, and 

consistent method from Illinois, which is the FHWA-UI method, shows lower 

performance than Alabama DLT method. 

10.3 Summary of comparison of resistance factors with AASHTO, NCHRP 507, and 

other states. 

This section attempts to summarize the comparison of the performance of the 

prediction methods used by ALDOT with prediction methods used by the federal 

government and other states. The parameters considered are the resistance factor and 

efficiency factor (not COV). ALDOT prediction methods are compared with the methods 

with the highest resistance and efficiency factor. It should be noted that, as seen in this 

chapter, specific comparisons are difficult due to the different cases considered by each 
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author. The different quality and quantity of data are the main factors to decide which 

cases can be studied. For instance, while other documents consider the soil type factor, 

this document considers just the type of pile due to the lack of data in specific soil types. 

Nevertheless, the comparison developed is useful to evaluate the performance of the 

prediction methods used by ALDOT.  

Regarding static analysis methods and according to the comparison performed, 

WBUZPILE and DRIVEN present lower reliability and efficiency than the static analysis 

methods provide by the federal publications available such as AASHTO and NCHRP 

507. In addition, this difference becomes even larger when comparing with Florida, 

Louisiana, and Iowa. The only state that shows consistent results with WBUZPILE and 

DRIVEN is Illinois. Apparently, this problem is cause by the limited data size from 

ALDOT. However, cases such as Louisiana, Iowa, and Illinois have similar or smaller 

data size than ALDOT. Florida has just 10 more piles than ALDOT and its results are 

significantly higher. Therefore, it can be concluded that the prediction method used by 

ALDOT (WBUZPILE) and DRIVEN is not as reliable for Alabama soils as the other 

static analysis methods considered in the comparison. For a better appreciation, Figures 

58 to 61 show a comparison of WBUZPILE and DRIVEN resistance and efficiency 

factors with the static analysis methods with the highest resistance and efficiency factors 

found in this chapter for redundant and non-redundant piles. 
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Figure 58: Static analysis methods with the highest φR for redundant piles. 
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Figure 59: Static analysis methods the highest φR for non‐redundant piles. 
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Figure 60: Static analysis methods with the highest φR/λR for redundant piles. 
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Figure 61: Static analysis methods with the highest φR/λR for non-redundant 
piles 

167 



   
 

 

 

 

Figures 58 and 60 show that, in regard on redundant piles, the Ruiter-Beringen 

method has the largest resistance factor and the αTomlinson/Norlund/Thurman method 

has the largest efficiency factor. Figures 59 and 61 show that, in regard of non-redundant 

piles, The SPT-Meyerhof method has the largest resistance factor, and the Blue Book and 

the αTomlinson/Norlund/Thurman method present the largest efficiency factors. These 

results indicate that the CPT, SPT, and some basic static analysis methods show high 

reliability and efficiency in other states. Nevertheless, this variety of results also indicates 

that a design program shall not be based on just one method. Therefore, it can be 

suggested to incorporate these models into an improved static analysis method for 

ALDOT. This improved ALDOT prediction method should consider at least three 

options. The first one can be based on CPT results and can be adapted from the Ruiter-

Beringen method. The second alternative can be based on SPT results and can be adapted 

from the SPT-Meyerhof method (The Blue Book method can be considered as well). 

Finally, the third one can be based on the basic static analysis methods: αTomlinson, 

Norlund, and Thurman. The three results can be evaluated and considered according to 

the designer judgment.  

Regarding control construction methods and according to the comparison 

performed, Alabama DLT method present higher reliability and almost similar efficiency 

to control construction methods provide by the federal publications available such us 

AASHTO and NCHRP 507. When comparing with other states, Alabama DLT has a 

higher reliability (higher resistance factors) than Arkansas, Illinois, and Iowa. However, 

Alabama DLT shows a slightly lower efficiency than Arkansas’ methods and slightly 

larger than efficiency than Illinois’s methods for non-redundant piles. It should be noted 

that even with a small data size (just 18 piles), Alabama DLT shows high reliability and 

acceptable efficiency. Calibrations performed for Arkansas and Illinois have larger data 

sizes, but they do not show as high reliability and efficiency. For a better understanding 

of the comparison, Figures 62 to 65 show a comparison of Alabama DLT resistance and 

efficiency factors with the control construction analysis methods with the highest 

resistance and efficiency factors found in this chapter for redundant and non-redundant 

piles. 
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Figure 62: Control construction methods with the highest φR for redundant 
piles. 
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Figure 63: Control construction methods with the highest φR for non-
redundant piles. 
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Figure 64: Control construction methods with the highest φR/λR for 
redundant piles. 
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Figure 65: Control construction methods the highest to φR/λR for non-
redundant piles. 
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Figures 62 and 64 show that, in regard on redundant piles, the DLT with signal 

matching method from AASHTO has the largest resistance factor (after Alabama DLT) 

and the FHWA-UI (Illinois) has the largest efficiency factor. Figures 43 and 45 show 

that, in regard of non-redundant piles, the DLT with signal matching method from 

AASHTO method has the largest resistance factor (after Alabama DLT), and the DLT 

with iCAP method presents the largest efficiency factors. These results indicate that DLT 

with signal matching is reliable and efficient control method for soils of Alabama and 

other states. 

To put it briefly, the static analysis methods and the control construction method 

used by the state of Alabama show very different performances when compared to 

federal government and other states. On one hand, on average, the Alabama’s static 

analysis methods are not as reliable, efficient, and consistent as the external studies 

considered in this chapter. On the other hand, the Alabama’s control construction 

methods are more reliable, efficient, and consistent than the external studies considered in 

this chapter. 

171 



   
 

 

 

  

 

 

 

CHAPTER XI - DISCUSSION OF RESULTS AND COMPARISONS 

As illustrated in the previous chapter, the LRFD resistance factors calibration, 

setup incorporation, and the comparison of resistance factors with bibliography from the 

federal government and other states are complex and very sensitive to the researcher 

judgment. Important considerations shall be taken before, during, and after performing 

the LRFD calibration. Therefore, this chapter shows the discussion and clarification 

related with the most important controversial facts involved within the present study.  

The calibration methodology in this study consists of FOSM, FORM, and MCS. 

The definitive resistance factors shall be consistent with just one calibration method or 

the average between the three methods. Factors such as conservativeness (resistance 

factors and efficiency factors) and rigorousness are considered to decide which 

calibration method to consider. In terms of conservatism, the average bias efficiency 

factor and average resistance factor are evaluated and compared for each data case. The 

calibration for WBUZPILE and DRIVEN reveals that the data case A (entire data) shows 

that the most conservative method is FOSM with an average bias efficiency factor of 0.25 

and average resistance factor of 0.22. For the same case, the least conservative method is 

MC with an average bias efficiency factor of 0.28 and average resistance factor of 0.24. 

The data case B (data without outliers identified by boxplot method) shows that the most 

conservative method is FOSM with an average bias efficiency factor of 0.30 and average 

resistance factor of 0.25. For the same case, the least conservative method is MC with an 

average bias efficiency factor of 0.33 and average resistance factor of 0.28. Finally, the 

data case C (data without outliers identified by two standard deviations method) shows 

that the most conservative method is FOSM with an average bias efficiency factor of 0.33 

and average resistance factor of 0.26. For the same case, the least conservative method is 

MC with an average bias efficiency factor of 0.37 and average resistance factor of 0.29. 

Moreover, the calibration for DLT reveals that the data case A shows that the most 

conservative method is FOSM with an average bias efficiency factor of 0.44 and average 

resistance factor of 0.70. For the same case, the least conservative method is MC with an 

average bias efficiency factor of 0.50 and average resistance factor of 0.80. The data 

172 



   
 

 

 

 

 

 

 

 

 

cases B and C show that the most conservative method is FOSM with an average bias 

efficiency factor of 0.51 and average resistance factor of 0.70. For the same case, the 

least conservative method is MC with an average bias efficiency factor of 0.59 and 

average resistance factor of 0.90. These results indicate that MCS generates higher, and 

more efficient and less conservative resistance factors. In terms of rigorousness and from 

the author’s perspective, FORM was the most rigorous method to use. FORM can be very 

rigorous to implement since it involves an iterative process, normal space and real space 

interaction, and basic geometry interpretation. Furthermore, the random variables are 

interacting with each other continuously. It is suggested to use software assistance to 

decrease the complexity FORM. MCS can be also rigorous because it also includes 

iteration and normal space variables. However, it is still understandable because each 

random variable is simulated individually and then incorporated to the limit equation 

together. In addition, MCS is based on numerical simulation assisted by software because 

performing it by hand would be extremely difficult and time consuming. FOSM is the 

least rigorous since the statistical characterization values are basically replaced in a 

simple equation. For these reasons MCS is considered for calibration of the definitive 

resistance factors in this study. 

The data cases generate different resistance factors. The data case A, which 

include all values available, shows an average resistance factor of 0.23 and an average 

bias efficiency factor of 0.27. The data case B, which excludes statistical outliers (more 

than 1.5 times IQR), produces an average resistance factor of 0.27 and an average bias 

efficiency factor of 0.32. The data case C, which excludes outliers more apart than two 

standard deviations from the mean, produces an average resistance factor of 0.28 and an 

average bias efficiency factor of 0.35. If a comparison is performed, the data case B 

presents an average resistance factor increase of 17.4 % and an average increase 

efficiency factor increase of 18.5% with respect of data case A results. The data case C 

presents an average resistance factor increase of 21.7 % and an average increase 

efficiency factor increase of 29.6 % with respect of data case A results. Therefore, data 

cases B or C generate substantial improvement and efficiency in the resistance factors. 

Nevertheless, as mentioned before, the data case A is the only one that can be considered 
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for the definitive resistance factors because the data provided by ALDOT does not 

present actual proof to be subjected to outlier removal according to the guide provided by 

Allen et al [9]. In other words, Allen et al [9] stated 6 possible reasons to exclude outliers, 

but the data and documentation used in this study does not show any related case. 

Consequently, data case A, or not removing outliers, is considered as the definitive data 

case. 

The setup incorporation in calibration purposes produced an important increase in 

the resistance factors. The evaluations at 30, 45, 60, and 90 days time interval showed 

that the larger the time, the higher increase of resistance factors. However, in actual 

projects, the time plays a very important role in its economy. In other words, it is not 

economically efficient to wait very long in order to gain more pile setup resistance 

because the project will have larger costs due to other aspects. In this way, it is important 

that the designer and the contractor establish an approximate time at which the piles will 

start to receive axial loads, before developing the final design.  

As previously stated, the pile setup incorporation was possible due to the Skov 

and Denver [1] model. Even though, the predicted resistances (used as measured 

resistances) were reasonable, the ideal procedure is to actually perform field tests at 

several time intervals. Dynamic tests using analysis software (PDA) and signal matching, 

such as CAPWAP or iCAP, have a reasonable price and considerable time saving 

compared to static load testing. Pile capacity data at and after EOID is vital for a better 

understanding of pile setup and for a more accurate and economic design of driven piles. 

The comparison of the LRFD resistance factors calibrated in this study with the 

LRFD resistance factors from AASHTO, NCHRP 507, and other states, showed that 

WBUZPILE and DRIVEN applied in Alabama soils show consistent resistance factors 

with the ones listed by AASHTO, NCHRP 507, Florida, Louisiana, Iowa, and Illinois 

regulations and studies. Nonetheless, both programs are still not as reliable, efficient, and 

consistent as the average design methods used by AASHTO, NCHRP 507, Florida, 

Louisiana, Iowa, and Illinois regulations and studies. Apparently, the main reason of this 

issue the limited sample size. However, studies developed in other states, such as 

Louisiana and Illinois, that data have similar or smaller sample size and show higher 
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better reliability, efficiency and consistency. In terms of reliability, Louisiana obtained 

LRFD resistance factors of 0.73 and 0.49 (Redundant all piles) for the De Ruiter-

Beringen method and Schmertmann method, respectively, compared with 0.28 from 

WBUZPILE and 0.22 from DRIVEN, using a similar data size to this study (53 piles). 

Moreover, Illinois obtained a LRFD resistance factor of 0.40 (redundant steel H-piles) for 

the Corrected K-IDOT method compared to 0.39 from WBUZPILE and 0.28 from 

DRIVEN, using only 26 piles as data set. In terms of efficiency, NCHRP 507 [6] reported 

a efficiency factor of 0.51 (redundant steel H-Piles in mixed soils) compared to 0.33 from 

WBUZPILE and 0.24 from DRIVEN using only 20 piles as data set. In terms of 

consistency, the same case (redundant steel H-Piles in mixed soils) from NCHRP 507 [6] 

reported a COV of only 0.39 compared to 0.56 from WBUZPILE and 0.72 from 

DRIVEN using only 20 piles as data set. Consequently, it is encouraged to enhance the 

analysis methodology used by WBUZPILE. The author suggests that this enhanced 

method shall be developed based on at least 3 methods. The first one shall be based on 

CPT results and can be adapted from the Ruiter-Beringen method. The second alternative 

shall be based on SPT results and can be adapted from the SPT-Meyerhof method (The 

Blue Book method can be considered as well). Finally, the third one shall be based on the 

basic static analysis methods: αTomlinson, Nordlund, and Thurman. The three results can 

be evaluated and considered according to the judgement of the researcher or designer. 

To put it briefly, the calibration of LRFD resistance factors involves complex and 

highly sensitive judgement of the researcher. Therefore, some considerations can be 

controversial and need to be discussed and clarified. The main considerations required to 

perform the LRFD calibrations adequately were described in this chapter. The topics 

discussed involve the calibration methodologies used in this study, the data cases 

evaluated, setup incorporation and its effects on the LRFD calibration, the data required 

for an ideal pile setup evaluation, and the comparison of the calibrated LRFD resistance 

factors from Alabama with bibliography from the federal government and other states.  
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CHAPTER XII - CONCLUSIONS AND RECOMMENDATIONS 

12.1 Conclusions. 

The primary objective of this study was to develop LRFD resistance factors 

unique to Alabama soils using FOSM, FORM, and MCS, to enhance accuracy and 

efficiency of pile design. The evaluated resistance determination methods were 

WBUZPILE, DRIVEN, and DLT. The second objective is to evaluate the performance of 

WBUZPILE and DRIVEN for pile design according to the relationships of the predicted 

capacity and the measured capacity. The third objective is to evaluate the performance of 

the Skov and Denver model for Alabama soils. The fourth objective was to evaluate the 

effect of pile setup on the calibrated LRFD resistance factors. Finally, the fifth objective 

was to compare the calibrated resistance factors with the recommended resistance factors 

from published studies from the federal government and other states in terms of 

reliability, consistency and efficiency. However, in addition to those objectives, the effect 

of data cases (filtering data from outliers) on the calibration resistance factors was 

evaluated as well as performance of WBUZPILE and DRIVEN according to the 

calibration results. The conclusions obtained from these objectives and analysis are 

described in the following paragraphs. 

According to the data provided by ALDOT and the evaluation of the performance 

of WBUZPILE and DRIVEN based only on predicted and measured capacities, 

WBUZPILE predicts a 19% higher pile capacity than DRIVEN on average. Furthermore, 

WBUZPILE predicts 11% higher capacity for H-piles and 3% higher capacity for 

concrete piles when compared to DRIVEN. Both DRIVEN and WBUZPILE are better at 

predicting the capacity of H-piles. Moreover, it is shown in this study that for H-piles, 

WBUZPILE was least accurate at predicting the pile capacity for soil type 3, where the 

tip was in sand, and mixed soils were along the shaft. WBUZPILE was most accurate at 

predicting the pile capacity for soil type 6, where the tip was embedded in clay, and sand 

was along the pile shaft. For concrete piles, WBUZPILE was least accurate at predicting 
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pile capacity for soil type 6, where the tip was embedded in clay, and mixed soils were 

along the pile shaft. WBUZPILE was most accurate at predicting the pile capacity for soil 

type 2, where the tip was in sand, and clay was along the shaft, although there are limited 

data points to confirm these conclusions. 

According to the data provided by ALDOT, the performance of the Skov and 

Denver model in Alabama soils was studied in two ways. The first way consists of using 

the model to predict the SLT resistance based on EOID field results. The second way 

consisted of using the model to predict the EOID resistance based on SLT field results. 

The results show that, for H-piles, the Skov and Denver method performs fairly 

accurately in both ways. For concrete piles, the Skov and Denver method is less accurate 

since it over-estimates the SLT capacity by 26.3% in the first analysis direction and 

under-estimates the EOID capacity by 14.5% in the second analysis direction.

 According to the data provided by ALDOT and the evaluation of data cases 

performed, the data case A (entire data) presents the most conservative case for 

WBUZPILE, DRIVEN, and DLT. The calibration for WBUZPILE and DRIVEN shows 

data case A with an average resistance factor of 0.23 and average efficiency factor 0.27. 

The data case B (data without outliers identified by boxplot method) shows an average 

resistance factor of 0.27 and an average efficiency factor of 0.32, which represents a 17% 

and 19% of increase from data case A results, respectively. The data case C (data without 

outliers identified by two standard deviations method) shows an average resistance factor 

of 0.28 and an average efficiency factor of 0.35, which represents a 22% and a 30% of 

increase from data case A results, respectively. Data cases B and C shows very similar 

resistance and efficiency factors. The calibration for DLT shows the data case A average 

resistance factor of 0.76 and average efficiency factor 0.48. Data cases B and C shows 

equal resistance and efficiency factors since both cases use the same data. The data case 

B and C show an average resistance factor of 0.85 and an average efficiency factor of 

0.56, which represents a 12% and 17% of increase from data case A results, respectively.  

According to the data provided by ALDOT and the setup incorporation and 

calibration performed, the setup incorporation into the calibration of LRFD specifications 

177 



   
 

 

 

 

 

 

 

produces higher resistance factors, hence meaningful construction cost savings. 

Moreover, it was observed that the setup incorporation generally generates efficiency 

increase and unvarying consistency.  The evaluation of WBUZPILE shows a resistance 

factor increase of between 0% to 27% for 30 days after EOID, 6% to 31% for 45 days 

after EOID, 9% to 35% for 60 days after EOID, 12% to 38% for 90 days after EOID. The 

evaluation of DRIVEN shows a resistance factor increase of between 4% to 29% for 30 

days after EOID, 4% to 29% for 45 days after EOID, 8% to 35% for 60 days after EOID, 

9% to 36% for 90 days after EOID. The evaluation of DLT shows a resistance factor 

increase of between 6% to 10% for 30 days after EOID, 7% to 13% for 45 days after 

EOID, 11% to 16% for 60 days after EOID, 16% to 20% for 90 days after EOID. It 

should be mentioned that more field tests are necessary to perform an ideal calibration of 

resistance factors considering pile setup. 

According to the data provided by ALDOT and the comparison of calibrated 

resistance factors, it is concluded that WBUZPILE applied to pile design in Alabama 

soils shows consistent resistance factors with the ones listed by AASHTO, NCHRP 507, 

Florida, Louisiana, Iowa, and Illinois regulations and studies. Nonetheless, WBUZPILE 

is still not as reliable, efficient, and consistent as the average design methods listed in the 

compared bibliography. In case of general piles, it underestimates the actual resistance by 

2%. In case of steel H-Piles, it overestimates the actual resistance by 18%. In case of 

concrete piles, it underestimates the actual resistance by 44%. In terms of consistency, 

WBUZPILE generates relatively large COV values (0.486 or larger). For these reasons, 

WBUZPILE produces resistance factors between 0.17 and 0.39. 

According to the data provided by ALDOT and the comparison of calibrated 

resistance factors performed, it is concluded that DRIVEN applied to pile design in 

Alabama Soils shows consistent resistance factors with the ones listed by AASHTO, 

NCHRP 507, Florida, Louisiana, Iowa, and Illinois regulations and studies. Nonetheless, 

DRIVEN is still not as reliable, efficient, and consistent as the average design methods 

listed in the compared bibliography. In case of general piles, it overestimates the actual 

resistance by 5%. In case of steel H-Piles, it overestimates the actual resistance by 23%. 

In case of concrete piles, it underestimates the actual resistance by 34%. In terms of 
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consistency, DRIVEN generates large COV values (0.527 or larger). For these reasons, 

DRIVEN produces resistance factors between 0.15 and 0.28. 

According to the data provided by ALDOT and the analysis performed, it is 

concluded that WBUZPILE is slightly more efficient and consistent than DRIVEN for 

general piles and steel H-piles. However, DRIVEN is slightly more efficient and 

consistent than WBUZPILE for concrete piles. 

According to the data provided by ALDOT and the analysis performed, it is 

concluded that DLT applied to pile design in Alabama soils shows consistent resistance 

factors with AASHTO, FHWA, and other states. Furthermore, DLT is still more reliable, 

efficient, and consistent as the average design methods used by AASHTO, FHWA, and 

other states. DLT tends to underestimate the actual resistance by 38%. In terms of 

consistency, DLT generates a relatively small COV value (0.352). For these reasons, 

DLT produces resistance factors between 0.70 and 0.88. 

According to the data provided by ALDOT and the calibration performed, it is 

concluded to consider the results of the Monte Carlo calibration method and the data case 

A, which includes all data available, as the definitive resistance factors. The final 

recommended resistance factors for WBUZPILE, DRIVEN, and dynamic load testing are 

shown in Table 49. The resistance factors from AASHTO specifications [37] are also 

listed in Table 49 to show whether this study calibrated higher or lower resistance factors. 
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Table 49: Recommended resistance factors for driven piles 

Condition Pile type 

Resistance 
Determination or 
Construction control 
method 

Resistance 
factor фR 

 фR from 
AASHTO 
(2014) 

Nominal axial 
bearing resistance 
of non‐redundant 
pile (4 piles or 
less) 

All piles 

WBUZPILE  0.19  0.71* 
DRIVEN  0.14  0.36 or 0.28 
PDA/iCAP  0.70  0.60 

Steel H‐
piles 

WBUZPILE  0.26  0.71* 
DRIVEN  0.20  0.36 or 0.28 
PDA/iCAP  0.70  0.60 

Concrete 
piles 

WBUZPILE  0.17  0.71* 
DRIVEN  0.23  0.36 or 0.28 
PDA/iCAP  0.70  0.60 

Nominal axial 
bearing resistance 
of redundant pile 
(5 piles or more) 

All piles 

WBUZPILE  0.28  0.71* 
DRIVEN  0.22  0.45 or 0.35 
PDA/iCAP  0.88  0.75 

Steel H‐
piles 

WBUZPILE  0.39  0.71* 
DRIVEN  0.28  0.45 or 0.35 
PDA/iCAP  0.88  0.75 

Concrete 
piles 

WBUZPILE  0.17  0.71* 
DRIVEN  0.25  0.45 or 0.35 
PDA/iCAP  0.88  0.75 

* = Obtained by fitting Factor of Safety (ASD). 

12.2  Recommendations. 

As shown in the conclusions chapter, several meaningful information and facts are 

provided by this study. However, this study also revealed that the LRFD calibration for 

driven piles in Alabama soils can be enhanced in the future by applying novel concepts 

and enlarge the data set available. Thus, this section describes some recommendations for 

future research as well as recommendations for the University of South Alabama and 

ALDOT. 
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12.2.1 Recommendation for future research. 

This section provides three recommendations to improve the results from future 

research related to LRFD calibration within geotechnical engineering. 

First, it is recommended that if more pile tests are available, the calibration can be 

performed more specifically to calibrate higher resistance factors. In other words, the 

piles can be categorized by shaft soil type, toe soil type, length, material, and geologic 

zones. This categorization would reduce the effect of external variables not considered 

and, hence reduce the COV of the samples and increase the resistance factors. 

Second, it is recommended to incorporate the concept of lower-bound capacities 

for future calibration purposes. According to Reddy and Stuedlein [45], for piles in 

compression, the consideration of lower-bound limit results in a 20%-150% increase in 

the calibrated resistance factors and would represent a substantial increase in usable pile 

capacity. 

Third, it is recommended to incorporate the concept of The Bayesian Update in 

case of new pile load test information arrives. As mentioned by Jabo [49], the 

implementation of The Bayesian Theorem makes the new information more valuable in 

the process of coupling new and existing data than just feeding a new entry into the 

database. In this way, new high-quality data and the Bayesian update are capable of 

generating higher resistance factors. 

12.2.2 Recommendations for ALDOT and The University of South Alabama. 

This section provides four recommendations for the University of South Alabama 

and ALDOT with the objective of establishing better sources, data, and tools for 

engineers and researchers concerned about LRFD calibration for Alabama soils. 

First, it is recommended to test a larger number of piles in Alabama. More data 

available is necessary to generate more accurate models to predict the ultimate pile 

resistance. It was shown than the COV of the resistance bias values has a strong impact 

on the final resistance factor. In this way, in general, an effective way to reduce COV is 

by increasing the size of the sample.   
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Second, it is recommended to perform more field tests after EOID at standard 

intervals of time. In this way, pile setup can be better evaluated and produce higher 

resistance factors. This paper incorporated pile setup using the model from Skov and 

Denver [1] and Haque and Steward [29] for calculating the measured resistance at 30, 

60, and 90 days. However, the ideal way would be to have actual measured data from 

restrike tests. 

Third, it is recommended to establish a database system for piles in Alabama. The 

number and availability of pile information and test results can have a significant positive 

impact on the calibration of resistance factors. Experiences such as PILOT in Iowa, 

represent a useful tool for the federal and local governments, universities, and 

researchers. 

Fourth, it is encouraged to enhance the analysis methodology used by 

WBUZPILE. The comparison chapter demonstrates that the current data size from 

ALDOT is capable of generating a prediction method as reliable, efficient, and consistent 

as the methods listed by AASHTO, NCHRP 507, Florida, Louisiana, Iowa, and Illinois 

regulations and studies. The author suggests that this enhanced method shall be 

developed based on at least 3 methods. The first one shall be based on CPT results and 

can be adapted from the Ruiter-Beringen method. The second alternative shall be based 

on SPT results and can be adapted from the SPT-Meyerhof method (The Blue Book 

method can be considered as well). Finally, the third one shall be based on the basic static 

analysis methods: αTomlinson, Nordlund, and Thurman. The three results can be 

evaluated and considered according to the judgment and experience of the researcher or 

designer. 
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